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Abstract

Legible motion enables humans to anticipate robot behavior during
social navigation, but existing approaches largely assume open
spaces, static interactions, and fully attentive pedestrians. We study
legibility in the ubiquitous and realistic setting of hallway navi-
gation through two user studies. Study 1 (N = 45) evaluates how
intent should be represented for legible navigation within a model
predictive control framework. We find that expressing intent at the
interaction level (i.e., passing side) and dynamically adapting it to
human motion leads to smoother human trajectories and higher
perceived competence than destination-based or non-legible base-
lines. Study 2 (N = 45) examines whether legibility remains ben-
eficial when pedestrians are cognitively distracted. While legible
motion still reduced abrupt human motion relative to the non-
legible baseline, subjective impressions were less sensitive under
distraction. Together, these results demonstrate that legibility is
most effective when grounded in immediate interaction objectives
and highlight the need to account for attentional variability.
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1 Introduction

Robots moving in pedestrian spaces like the workplace, and public
spaces must do more than simply avoid collisions: they must move
in ways that people can intuitively interpret. In human-human
encounters, pedestrians rely on subtle cues such as gaze, orienta-
tion, and small path adjustments to infer each other’s intentions
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Figure 1: Instance from our study investigating legible social
robot navigation in hallways. Footage from our experiments
can be found at https://youtu.be/P505BwfcUCo.

and coordinate smooth passages [37]. Robots, however, lack these
ingrained social signals. When their motion is difficult to interpret,
pedestrians may hesitate, yield unnecessarily, or experience discom-
fort [23]. This motivates the integration of legibility [7, 15, 22, 33]
into the social robot navigation (SRN) control stack.

Legibility, the property of motion that enables an observer to
quickly and confidently infer the robot’s intent has been extensively
studied in human-robot interaction (HRI) [3, 6-9, 17, 22, 31, 33].
Early work established that legibility can improve collaboration in
manipulation tasks by reducing ambiguity and building trust. For
example, Dragan and Srinivasa [8] showed that legible trajectory
planning can make a robot’s intended goal easier to infer, and
subsequent studies demonstrated that intent-expressive motion
enhances perceived safety and efficiency in shared tasks [6, 17, 31].
Later work recognized the value of legibility for any joint HRI
activity [15], discussed the impact of important parameters like
the observer’s viewpoint [24, 33], and proposed frameworks for
transferring the benefits of legibility in other domains [17, 22, 35].
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Figure 2: Hardware and materials used across our studies.

Despite rich activity in legibility for HRI, several gaps remain.
Most prior formulations assume that the observer’s inference is
over the robot’s destinations. This abstraction suits manipulation
tasks [3, 7, 31], but it breaks down in navigation: pedestrians do
not need to know where others are ultimately headed; they just
need to know how to resolve a possible conflict [22, 37]. Addi-
tionally, prior work often evaluates legibility via studies involving
passive observation of robot motion [7, 14, 32, 33], overlooking
that in many HRI contexts, people are both observers and actors
who dynamically adapt to the robot’s movements. While prior
explorations of legibility in navigation domains often emphasize
open-space navigation [17, 22, 33], constrained spaces are more
common in the real world and more challenging to navigate [29].
Earlier studies on hallway navigation emphasize human-robot prox-
emics and side-passing conventions [20, 25, 26], but lack a sys-
tematic investigation of legibility representations. Finally, prior
work on legible motion assumes that humans are fully attentive
observers [3, 6-9, 17, 22, 31, 33], yet in many real-world environ-
ments, including SRN domains, human attention is often scattered
across multiple tasks like texting, speaking on the phone, carrying
objects, etc. These tasks act as distractors that may limit the ability
of the robot to influence human behavior.

Motivated by these gaps, we revisit legible motion in SRN and
formulate two research questions: (Q1) How does intent represen-
tation shape legible SRN?, (Q2) How does human distraction impact
benefits of legible SRN? To approach these questions, we embed
alternative formulations of legible motion into model predictive
control and evaluate them across two studies in a hallway setting.
Study 1 (N = 45) explores the impact of intent representation on
human navigation performance and impressions. Study 2 (N = 45)
examines the value of legible motion under distraction. Across both
studies, we analyze subjective perceptions of competence, comfort,
and effort, alongside objective measures of human motion.

2 How Intent Representation Shapes Legible
SRN

We present an IRB-approved lab study (HUM00268645) examin-
ing how intent representation in legible motion generation affects
navigation performance and user impressions (Q1).

2.1 Experiment Design

Experimental setup. The study took place in a hallway of size
2mx5.8 m, constructed with room dividers inside the lab (see Fig. 1).
An easel pad was placed at each hallway end. We used the Hello
Robot Stretch 2 mobile platform. An overhead camera (Insta360)
recorded RGB video if the user gave consent. A motion capture
system (OptiTrack) was used to localize the robot and the users.
The full experimental apparatus is shown in Fig. 2.
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Procedure. Participants provided informed consent, received
task instructions, and completed one practice encounter, followed
by five trials (~80 s each) and a brief questionnaire. Sessions con-
cluded with demographics and debriefing, lasted under 40 minutes,
and participants were compensated $20.

Task description. Participants performed a mock “factory in-
spection” task by walking between easel pads at hallway ends to
place stickers while the robot navigated in the opposite direction,
creating repeated head-on encounters. Each trial used a different
navigation algorithm. Turnarounds were synchronized via a gong,
and the robot’s slower speed (0.33 m/s) was accommodated by plac-
ing its turnaround points closer to ensure consistent encounters.

2.2 Conditions

Each participant completed five trials in a within-subjects design,
with the robot executing a different navigation strategy in each trial.
All strategies used the same state-of-the-art MPC controller [36],
with identical safety and efficiency objectives and a Constant Ve-
locity (CV) human-motion predictor from prior work [16, 19, 27, 28,
30, 34]. The only manipulated factors were the robot’s expressed
intent and whether it was adaptively updated during the encounter.

Goal-based legibility (GL). Here the robot’s intent is modeled
as the set of the two hallway endpoints, corresponding to the robot’s
intended destination, similar to prior legibility implementations [7,
17]. Intuitively, this algorithm is favoring actions that consistently
communicate the robot’s intended destination.

Passing-side legibility (PL). Here the robot’s intent consists
of artificial subgoals placed to the left and right of the hallway
endpoints, effectively creating the notion of passing-side interac-
tions. By steering toward one of these offsets, the robot conveys
its intended side of passage. The robot’s true intent is assigned at
random before the trial and held fixed for each encounter.

Dynamic passing side legibility (DPL). Here, robot’s intent
is also defined as the notion of passing-side interaction like PL, but
the true intent is dynamically adapted at run time. Specifically, the
robot selects the passing side associated with the lower predicted
probability of being chosen by the human, based on CV predictions
of the human’s motion.

Social Momentum (SM) [22]. Here robot’s intent explicitly
consists of passing from the left or right side. Unlike PL and DPL,
which encode passing-side intent through artificial offset goals, SM
reasons about passing directly in the joint human-robot interaction
space. The passing side is determined using the angular momentum
of the system: its sign encodes the passing side, while its magni-
tude reflects confidence [22]. The true robot’s intent is dynamically
adapted based on the passing preference of the human.

No legibility (NL). The baseline is a standard MPC formulation
in which the legibility term is omitted, resulting in purely functional
robot navigation with only safety and efficiency objectives.

2.3 Measures

To analyze human motion, we measure human path inefficiency
using the Path Irregularity (Human PI) measure [11], defined as
the amount of unnecessary turning per unit path length (rad/m).
We also measure human path jerkiness as the average human path
acceleration over a trial (Human AA).
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We also study user impressions collected via questionnaires.
We use the Discomfort and Competence subscales of RoSAS [5],
presented in randomized order on 9-point Likert scales. We also
use the Mental, Physical, Temporal, Frustration, Performance, and
Effort demand scales from NASA-TLX [12], presented in a 21-point
format. To capture perceived goal clarity, we asked users to rate: (L1)
— “The robot will bump into me in the future” (perceived collision
risk); (L2) - “I was quickly and accurately able to tell where the
robot wants to go” (perceived legibility, based on Dragan et al. [7]),
both presented as 7-point scales. Finally, we collected open-form
responses to capture insights not covered by the structured scales.

2.4 Hypotheses

We study how different legibility implementations impact naviga-
tion performance and impressions by investigating the following:

H1: “Legible algorithms will be more positively perceived
and enable higher user performance” We hypothesize that
legible algorithms (GL, SM, PL, DPL) will lead to lower acceleration
and more regular paths for the users, compared to non-legible
algorithms (NL). We further expect legible algorithms to be rated
as more competent and comfortable on the RoSAS scale, and to
impose lower workload on users as measured by the NASA TLX,
in contrast to non-legible algorithms.

H2: “Legibility over the robot’s passing side will be more
positively perceived and enable higher user performance
compared to legibility over the robot’s goal” We hypothesize
that passing side legibility (PL, DPL, SM) will enable faster and more
accurate inference of the robot’s intent than goal-based legibility
(GL), as reflected in responses. Passing side legibility is also expected
to yield smoother trajectories (lower acceleration and more regular
paths), and to be perceived as more competent, comfortable, and
less effortful for users compared to goal-based legibility.

H3: “Dynamically adapting the robot’s legibility intent
based on user reaction will be more positively perceived and
enable higher user performance compared to legibility over a
fixed intent” We hypothesize that dynamic adaptation (SM, DPL)
will outperform fixed intent legibility (PL) under the same passing
side representation. Specifically, dynamic algorithms are expected
to produce smoother human motion (lower acceleration and more
regular paths), be perceived as more competent and comfortable,
and require less effort and workload than fixed intent approaches.

2.5 Analysis

Data from 45 participants recruited from University of Michigan
were analyzed (Mage = 22.42, SD = 2.75; self-reported robotics
familiarity M = 3.68, SD = 1.03) using linear mixed-effects model
with random intercepts for participants, fixed effects for algorithm
and order, and Benjamini-Hochberg (BH) corrected pairwise con-
trasts. Discomfort and Competence ratings are summarized in Ta-
ble 1; workload-related measures, L1 and Human AA, are shown
in Fig. 3. No significant effects were observed for Human PI, L2, or
the NASA-TLX Performance, Effort, and Temporal Demand.

H1. Human AA was significantly higher under NL than under
SM (p < .01) and DPL/PL (p < .05), indicating jerkier human
motion during encounters with a non-legible robot. NL was rated
less competent than SM and DPL (p < .05) and more likely to collide
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Table 1: RoSAS ratings (EMM [95% CI]). Different letters indi-
cate significant pairwise differences (p < .05, BH corrected).
No letters denote no significant differences.

Algorithm Competence T  Discomfort |

SM 5.75 [5.19, 6.31]*  2.52 [2.04, 2.99]
DPL 5.66 [5.11, 6.22]¢  2.30 [1.83, 2.78]”
PL 5.05 [4.49, 5.61]"  2.95 [2.48, 3.43]¢
NL 5.05 [4.50, 5.61]"  2.53 [2.06, 3.01]
GL 4.62 [4.06,5.171Y  3.09 [2.62, 3.57]°

(L1; p < .05). Interpretation: Legibility enhances both perceived and
objective interaction quality; however, improvements depend on
the specific formulation. H1 is partially supported.

H2. GL consistently underperformed the passing-side strategies:
lower competence (p < .001 vs. SM/DPL), higher discomfort (p <
.05 vs. DPL), and the highest Human AA (p < .01 vs. SM/DPL/PL).
Interpretation: Destination-based legibility miscommunicates intent
in tight encounters, whereas passing-side intent provides clearer
conflict-resolution cues. H2 is partially supported.

H3. SM and DPL were rated more competent and less collision-
prone than PL (p < .05). Human AA differences were mixed and not
statistically significant. Interpretation: With a passing-side intent
representation, dynamic adaptation improves perceived compe-
tence and comfort, though objective measures showed no signifi-
cant differences. H3 is partially supported.

Summary. Across all three hypotheses, results indicate that legi-
bility is most effective when (i) intent is expressed at the interaction
level (passing side) and (ii) legibility signals adapt to evolving hu-
man motion. SM and DPL best satisfied these criteria, yielding the
smoothest trajectories and highest perceived competence, whereas
GL consistently degraded both performance and impressions.

3 How Human Distraction Impacts Benefits of
Legible SRN

In Study 2, we investigate the role of legible motion under distrac-
tion (Q2). The distraction factor was implemented between subjects:
the no-distraction data came from Study 1, while a new participant
cohort performed the same task under distraction.

3.1 Study Design

We used the same task setup as Study 1, where participants per-
formed a mock factory inspection task in hallway scenario.

Distraction task. Participants listened to a narrated passage
via earbuds and answered multiple-choice questions on a mobile
device (Fig. 4), inducing divided attention consistent with prior
work on distracted walking [2, 21]. Passages were standardized and
validated via pilot testing to ensure consistent cognitive load.

Procedure. Participants completed three~80 s trials while per-
forming the distraction task and completed the same subjective
measures as in Study 1 after each trial. Sessions lasted up to 30 min,
and participants were compensated $15.

Conditions. Three navigation algorithms were tested in a within-
subjects design: Dynamic Passing-side Legibility (DPL), Social Mo-
mentum (SM), and No Legibility (NL). DPL and SM were selected
as the strongest legible performers from Study 1, with NL as the
non-legible reference.
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Figure 4: Experimental setup for the distraction condition.
Participants walked while listening to audio passages and
answering comprehension questions on a phone, inducing
divided attention during head-on encounters with the robot.

Hypothesis H4: ‘Legible algorithms will be more positively
perceived and enable higher user performance in the pres-
ence of cognitive distraction, compared to respective ratings
and performance under no distraction” We hypothesize that
divided attention increases navigational uncertainty, increasing the
value of clear robot intent for conflict resolution.

3.2 Analysis

Data from 45 new participants were analyzed (Mage = 23.55, SD =
4.05; self-reported robotics familiarity M = 3.40, SD = 0.91). To
validate the distraction manipulation, we compared cognitive- and
motion-related outcomes across conditions. Participants reported
significantly higher mental demand under distraction than no-
distraction (¢(241.9) = —8.87, p < .001). Distraction also reduced
walking speed (0.96 vs. 1.11 m/s; t(244.23) = 8.71, p < .001) and
increased robot acceleration during encounters (1.70 vs. 1.34 m/s%),
confirming increased navigational difficulty.

Algorithm effects under distraction were modeled using lin-
ear mixed-effects regression as in Study 1. Subjective impressions
did not differ significantly between algorithms. However, legible
motion reduced Human AA: SM yielded significantly lower acceler-
ation than NL (0.803 vs. 0.947, p < .05), and DPL (0.887) showed a
similar trend. These improvements were comparable in magnitude
to those observed in the no-distraction condition.

H4. We tested whether distraction amplified the benefits of
legibility by including fixed effects of Algorithm, Distraction, and
their interaction. Likelihood-ratio tests showed that the interaction
term did not improve model fit, indicating that distraction did not

significantly alter algorithm performance on any metric. Thus, H4
was not supported: legible algorithms did not produce stronger
gains under distraction than in the no-distraction setting.

3.3 Exploratory Insights

Residual variance in competence and discomfort ratings was lower
under distraction (competence: 1.24 vs. 1.01; discomfort: 0.71 vs.
0.46), indicating more uniform judgments when attention was di-
vided and reducing the ability to detect algorithm-level differences.
In contrast, residual variance in Human AA increased (0.041 vs.
0.072), consistent with more variable walking behavior. Speed-
moderation analyses showed that legibility effects intensified at
higher walking speeds. Under distraction, SM produced signifi-
cantly lower Human AA than NL across the 25th, 50th, and 75th
percentiles (p < .05), with the gap widening as speed increased.

Summary. Legible motion retained its objective benefits un-
der distraction, particularly at higher and typical walking speeds,
but subjective impressions were less sensitive due to reduced at-
tentional capacity. These findings suggest that legibility remains
valuable when users are inattentive.

4 Discussion

Across two studies, we examined how intent should be repre-
sented for legible SRN and whether legibility remains effective
under pedestrian distraction. Study 1 showed that widely adopted
destination-based formulations [1, 7, 17, 18, 33] increased workload
and produced less smooth human motion, whereas dynamically
adaptive passing-side intent provided clearer cues for resolving
head-on encounters. Study 2 confirmed that these objective bene-
fits persisted under distraction, with stronger effects at typical and
higher walking speeds. Overall, the results suggest that legibility
in navigation should prioritize real-time interaction coordination
over predictability of the robot’s final goal.

Both studies were conducted in a controlled hallway with scripted
one-on-one encounters, enabling precise comparisons while lim-
iting ecological complexity. Robot speed was capped at 0.33 m/s
for safety, consistent with prior constrained-space HRI studies [4,
10, 13, 20], likely reducing collision risk. Future work will evaluate
faster platforms and multi-agent interactions in richer crowd set-
tings, and explore online estimation of human attentional state to
balance efficiency and legibility alongside contextual factors such
as environmental complexity, physical effort, and task urgency.
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