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Abstract
Legible motion enables humans to anticipate robot behavior during 
social navigation, but existing approaches largely assume open 
spaces, static interactions, and fully attentive pedestrians. We study 
legibility in the ubiquitous and realistic setting of hallway navi­
gation through two user studies. Study 1 (𝑁 = 45) evaluates how 
intent should be represented for legible navigation within a model 
predictive control framework. We find that expressing intent at the 
interaction level (i.e., passing side) and dynamically adapting it to 
human motion leads to smoother human trajectories and higher 
perceived competence than destination-based or non-legible base­
lines. Study 2 (𝑁 = 45) examines whether legibility remains ben­
eficial when pedestrians are cognitively distracted. While legible 
motion still reduced abrupt human motion relative to the non-
legible baseline, subjective impressions were less sensitive under 
distraction. Together, these results demonstrate that legibility is 
most effective when grounded in immediate interaction objectives 
and highlight the need to account for attentional variability.

CCS Concepts
• Computer systems organization → Robotic autonomy; Robotic 
control; • Human-centered computing → Laboratory experi­
ments; Collaborative interaction; • Computing methodologies
→ Cognitive robotics; Robotic planning.
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1 Introduction
Robots moving in pedestrian spaces like the workplace, and public 
spaces must do more than simply avoid collisions: they must move 
in ways that people can intuitively interpret. In human–human 
encounters, pedestrians rely on subtle cues such as gaze, orienta­
tion, and small path adjustments to infer each other’s intentions 
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Figure 1: Instance from our study investigating legible social 
robot navigation in hallways. Footage from our experiments 
can be found at https://youtu.be/P5O5BwfcUCo.
and coordinate smooth passages [37]. Robots, however, lack these 
ingrained social signals. When their motion is difficult to interpret, 
pedestrians may hesitate, yield unnecessarily, or experience discom­
fort [23]. This motivates the integration of legibility [7, 15, 22, 33] 
into the social robot navigation (SRN) control stack.

Legibility, the property of motion that enables an observer to 
quickly and confidently infer the robot’s intent has been extensively 
studied in human-robot interaction (HRI) [3, 6–9, 17, 22, 31, 33]. 
Early work established that legibility can improve collaboration in 
manipulation tasks by reducing ambiguity and building trust. For 
example, Dragan and Srinivasa [8] showed that legible trajectory 
planning can make a robot’s intended goal easier to infer, and 
subsequent studies demonstrated that intent-expressive motion 
enhances perceived safety and efficiency in shared tasks [6, 17, 31]. 
Later work recognized the value of legibility for any joint HRI 
activity [15], discussed the impact of important parameters like 
the observer’s viewpoint [24, 33], and proposed frameworks for 
transferring the benefits of legibility in other domains [17, 22, 35].
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Figure 2: Hardware and materials used across our studies.
Despite rich activity in legibility for HRI, several gaps remain. 

Most prior formulations assume that the observer’s inference is 
over the robot’s destinations. This abstraction suits manipulation 
tasks [3, 7, 31], but it breaks down in navigation: pedestrians do 
not need to know where others are ultimately headed; they just 
need to know how to resolve a possible conflict [22, 37]. Addi­
tionally, prior work often evaluates legibility via studies involving 
passive observation of robot motion [7, 14, 32, 33], overlooking 
that in many HRI contexts, people are both observers and actors 
who dynamically adapt to the robot’s movements. While prior 
explorations of legibility in navigation domains often emphasize 
open-space navigation [17, 22, 33], constrained spaces are more 
common in the real world and more challenging to navigate [29]. 
Earlier studies on hallway navigation emphasize human-robot prox­
emics and side-passing conventions [20, 25, 26], but lack a sys­
tematic investigation of legibility representations. Finally, prior 
work on legible motion assumes that humans are fully attentive 
observers [3, 6–9, 17, 22, 31, 33], yet in many real-world environ­
ments, including SRN domains, human attention is often scattered 
across multiple tasks like texting, speaking on the phone, carrying 
objects, etc. These tasks act as distractors that may limit the ability 
of the robot to influence human behavior.

Motivated by these gaps, we revisit legible motion in SRN and 
formulate two research questions: (Q1) How does intent represen­
tation shape legible SRN? , (Q2) How does human distraction impact 
benefits of legible SRN? To approach these questions, we embed 
alternative formulations of legible motion into model predictive 
control and evaluate them across two studies in a hallway setting. 
Study 1 (𝑁 = 45) explores the impact of intent representation on 
human navigation performance and impressions. Study 2 (𝑁 = 45) 
examines the value of legible motion under distraction. Across both 
studies, we analyze subjective perceptions of competence, comfort, 
and effort, alongside objective measures of human motion.

2 How Intent Representation Shapes Legible 
SRN

We present an IRB-approved lab study (HUM00268645) examin­
ing how intent representation in legible motion generation affects 
navigation performance and user impressions (Q1).

2.1 Experiment Design
Experimental setup. The study took place in a hallway of size 
2m×5.8m, constructed with room dividers inside the lab (see Fig. 1). 
An easel pad was placed at each hallway end. We used the Hello 
Robot Stretch 2 mobile platform. An overhead camera (Insta360) 
recorded RGB video if the user gave consent. A motion capture 
system (OptiTrack) was used to localize the robot and the users. 
The full experimental apparatus is shown in Fig. 2.

Procedure. Participants provided informed consent, received 
task instructions, and completed one practice encounter, followed 
by five trials (∼80 s each) and a brief questionnaire. Sessions con­
cluded with demographics and debriefing, lasted under 40 minutes, 
and participants were compensated $20.

Task description. Participants performed a mock “factory in­
spection” task by walking between easel pads at hallway ends to 
place stickers while the robot navigated in the opposite direction, 
creating repeated head-on encounters. Each trial used a different 
navigation algorithm. Turnarounds were synchronized via a gong, 
and the robot’s slower speed (0.33 m/s) was accommodated by plac­
ing its turnaround points closer to ensure consistent encounters.

2.2 Conditions
Each participant completed five trials in a within-subjects design, 
with the robot executing a different navigation strategy in each trial. 
All strategies used the same state-of-the-art MPC controller [36], 
with identical safety and efficiency objectives and a Constant Ve­
locity (CV) human-motion predictor from prior work [16, 19, 27, 28,
30, 34]. The only manipulated factors were the robot’s expressed 
intent and whether it was adaptively updated during the encounter.

Goal-based legibility (GL). Here the robot’s intent is modeled 
as the set of the two hallway endpoints, corresponding to the robot’s 
intended destination, similar to prior legibility implementations [7,
17]. Intuitively, this algorithm is favoring actions that consistently 
communicate the robot’s intended destination.

Passing-side legibility (PL). Here the robot’s intent consists 
of artificial subgoals placed to the left and right of the hallway 
endpoints, effectively creating the notion of passing-side interac­
tions. By steering toward one of these offsets, the robot conveys 
its intended side of passage. The robot’s true intent is assigned at 
random before the trial and held fixed for each encounter.

Dynamic passing side legibility (DPL). Here, robot’s intent 
is also defined as the notion of passing-side interaction like PL, but 
the true intent is dynamically adapted at run time. Specifically, the 
robot selects the passing side associated with the lower predicted 
probability of being chosen by the human, based on CV predictions 
of the human’s motion.

Social Momentum (SM) [22]. Here robot’s intent explicitly 
consists of passing from the left or right side. Unlike PL and DPL, 
which encode passing-side intent through artificial offset goals, SM 
reasons about passing directly in the joint human–robot interaction 
space. The passing side is determined using the angular momentum 
of the system: its sign encodes the passing side, while its magni­
tude reflects confidence [22]. The true robot’s intent is dynamically 
adapted based on the passing preference of the human.

No legibility (NL). The baseline is a standard MPC formulation 
in which the legibility term is omitted, resulting in purely functional 
robot navigation with only safety and efficiency objectives.

2.3 Measures
To analyze human motion, we measure human path inefficiency 
using the Path Irregularity (Human PI) measure [11], defined as 
the amount of unnecessary turning per unit path length (rad/m). 
We also measure human path jerkiness as the average human path 
acceleration over a trial (Human AA).
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We also study user impressions collected via questionnaires. 
We use the Discomfort and Competence subscales of RoSAS [5], 
presented in randomized order on 9-point Likert scales. We also 
use the Mental, Physical, Temporal, Frustration, Performance, and 
Effort demand scales from NASA-TLX [12], presented in a 21-point 
format. To capture perceived goal clarity, we asked users to rate: (L1) 
– “The robot will bump into me in the future” (perceived collision 
risk); (L2) – “I was quickly and accurately able to tell where the 
robot wants to go” (perceived legibility, based on Dragan et al. [7]), 
both presented as 7-point scales. Finally, we collected open-form 
responses to capture insights not covered by the structured scales.

2.4 Hypotheses
We study how different legibility implementations impact naviga­
tion performance and impressions by investigating the following:

H1: “Legible algorithms will be more positively perceived 
and enable higher user performance.” We hypothesize that 
legible algorithms (GL, SM, PL, DPL) will lead to lower acceleration 
and more regular paths for the users, compared to non-legible 
algorithms (NL). We further expect legible algorithms to be rated 
as more competent and comfortable on the RoSAS scale, and to 
impose lower workload on users as measured by the NASA TLX, 
in contrast to non-legible algorithms.

H2: “Legibility over the robot’s passing side will be more 
positively perceived and enable higher user performance 
compared to legibility over the robot’s goal.” We hypothesize 
that passing side legibility (PL, DPL, SM) will enable faster and more 
accurate inference of the robot’s intent than goal-based legibility 
(GL), as reflected in responses. Passing side legibility is also expected 
to yield smoother trajectories (lower acceleration and more regular 
paths), and to be perceived as more competent, comfortable, and 
less effortful for users compared to goal-based legibility.

H3: “Dynamically adapting the robot’s legibility intent 
based on user reaction will be more positively perceived and 
enable higher user performance compared to legibility over a 
fixed intent.” We hypothesize that dynamic adaptation (SM, DPL) 
will outperform fixed intent legibility (PL) under the same passing 
side representation. Specifically, dynamic algorithms are expected 
to produce smoother human motion (lower acceleration and more 
regular paths), be perceived as more competent and comfortable, 
and require less effort and workload than fixed intent approaches.

2.5 Analysis
Data from 45 participants recruited from University of Michigan 
were analyzed (𝑀age = 22.42, 𝑆𝐷 = 2.75; self-reported robotics 
familiarity 𝑀 = 3.68, 𝑆𝐷 = 1.03) using linear mixed-effects model 
with random intercepts for participants, fixed effects for algorithm 
and order, and Benjamini–Hochberg (BH) corrected pairwise con­
trasts. Discomfort and Competence ratings are summarized in Ta­
ble 1; workload-related measures, L1 and Human AA, are shown 
in Fig. 3. No significant effects were observed for Human PI, L2, or 
the NASA–TLX Performance, Effort, and Temporal Demand.

H1. Human AA was significantly higher under NL than under 
SM (𝑝 < .01) and DPL/PL (𝑝 < .05), indicating jerkier human 
motion during encounters with a non-legible robot. NL was rated 
less competent than SM and DPL (𝑝 < .05) and more likely to collide 

Table 1: RoSAS ratings (EMM [95% CI]). Different letters indi­
cate significant pairwise differences (𝑝 < .05, BH corrected). 
No letters denote no significant differences.

 Algorithm  Competence ↑  Discomfort ↓

 SM  5.75 [5.19, 6.31]𝑎  2.52 [2.04, 2.99]
 DPL  5.66 [5.11, 6.22]𝑎  2.30 [1.83, 2.78]𝑏

 PL  5.05 [4.49, 5.61]𝑏  2.95 [2.48, 3.43]𝑎

 NL  5.05 [4.50, 5.61]𝑏  2.53 [2.06, 3.01]
 GL  4.62 [4.06, 5.17]𝑏  3.09 [2.62, 3.57]𝑎

(L1; 𝑝 < .05). Interpretation: Legibility enhances both perceived and 
objective interaction quality; however, improvements depend on 
the specific formulation. H1 is partially supported.

H2. GL consistently underperformed the passing-side strategies: 
lower competence (𝑝 < .001 vs. SM/DPL), higher discomfort (𝑝 <
.05 vs. DPL), and the highest Human AA (𝑝 < .01 vs. SM/DPL/PL). 
Interpretation: Destination-based legibility miscommunicates intent 
in tight encounters, whereas passing-side intent provides clearer 
conflict-resolution cues. H2 is partially supported.

H3. SM and DPL were rated more competent and less collision-
prone than PL (𝑝 < .05). Human AA differences were mixed and not 
statistically significant. Interpretation: With a passing-side intent 
representation, dynamic adaptation improves perceived compe­
tence and comfort, though objective measures showed no signifi­
cant differences. H3 is partially supported.

Summary. Across all three hypotheses, results indicate that legi­
bility is most effective when (i) intent is expressed at the interaction 
level (passing side) and (ii) legibility signals adapt to evolving hu­
man motion. SM and DPL best satisfied these criteria, yielding the 
smoothest trajectories and highest perceived competence, whereas 
GL consistently degraded both performance and impressions.

3 How Human Distraction Impacts Benefits of 
Legible SRN

In Study 2, we investigate the role of legible motion under distrac­
tion (Q2). The distraction factor was implemented between subjects: 
the no-distraction data came from Study 1, while a new participant 
cohort performed the same task under distraction.

3.1 Study Design
We used the same task setup as Study 1, where participants per­
formed a mock factory inspection task in hallway scenario.

Distraction task. Participants listened to a narrated passage 
via earbuds and answered multiple-choice questions on a mobile 
device (Fig. 4), inducing divided attention consistent with prior 
work on distracted walking [2, 21]. Passages were standardized and 
validated via pilot testing to ensure consistent cognitive load.

Procedure. Participants completed three∼80 s trials while per­
forming the distraction task and completed the same subjective 
measures as in Study 1 after each trial. Sessions lasted up to 30 min, 
and participants were compensated $15.

Conditions. Three navigation algorithms were tested in a within-
subjects design: Dynamic Passing-side Legibility (DPL), Social Mo­
mentum (SM), and No Legibility (NL). DPL and SM were selected 
as the strongest legible performers from Study 1, with NL as the 
non-legible reference.
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Figure 3: Estimated marginal means (95% CI) for Human Average Acceleration (𝑚/𝑠2), L1 (1–7 Likert), Mental Demand (1–21), 
and Physical Demand (1–21). Bars with asterisks indicate significant pairwise differences: 𝑝 < .001, 𝑝 < .01, 𝑝 < .05.

Figure 4: Experimental setup for the distraction condition. 
Participants walked while listening to audio passages and 
answering comprehension questions on a phone, inducing 
divided attention during head-on encounters with the robot.

Hypothesis H4: ‘Legible algorithms will be more positively 
perceived and enable higher user performance in the pres­
ence of cognitive distraction, compared to respective ratings 
and performance under no distraction.” We hypothesize that 
divided attention increases navigational uncertainty, increasing the 
value of clear robot intent for conflict resolution.

3.2 Analysis
Data from 45 new participants were analyzed (𝑀age = 23.55, 𝑆𝐷 =
4.05; self-reported robotics familiarity 𝑀 = 3.40, 𝑆𝐷 = 0.91). To 
validate the distraction manipulation, we compared cognitive- and 
motion-related outcomes across conditions. Participants reported 
significantly higher mental demand under distraction than no-
distraction (𝑡(241.9) = −8.87, 𝑝 < .001). Distraction also reduced 
walking speed (0.96 vs. 1.11m/s; 𝑡(244.23) = 8.71, 𝑝 < .001) and 
increased robot acceleration during encounters (1.70 vs. 1.34m/s2), 
confirming increased navigational difficulty.

Algorithm effects under distraction were modeled using lin­
ear mixed-effects regression as in Study 1. Subjective impressions 
did not differ significantly between algorithms. However, legible 
motion reduced Human AA: SM yielded significantly lower acceler­
ation than NL (0.803 vs. 0.947, 𝑝 < .05), and DPL (0.887) showed a 
similar trend. These improvements were comparable in magnitude 
to those observed in the no-distraction condition.

H4. We tested whether distraction amplified the benefits of 
legibility by including fixed effects of Algorithm, Distraction, and 
their interaction. Likelihood-ratio tests showed that the interaction 
term did not improve model fit, indicating that distraction did not 

significantly alter algorithm performance on any metric. Thus, H4 
was not supported: legible algorithms did not produce stronger 
gains under distraction than in the no-distraction setting.

3.3 Exploratory Insights
Residual variance in competence and discomfort ratings was lower 
under distraction (competence: 1.24 vs. 1.01; discomfort: 0.71 vs. 
0.46), indicating more uniform judgments when attention was di­
vided and reducing the ability to detect algorithm-level differences. 
In contrast, residual variance in Human AA increased (0.041 vs. 
0.072), consistent with more variable walking behavior. Speed-
moderation analyses showed that legibility effects intensified at 
higher walking speeds. Under distraction, SM produced signifi­
cantly lower Human AA than NL across the 25th, 50th, and 75th 
percentiles (𝑝 < .05), with the gap widening as speed increased.

Summary. Legible motion retained its objective benefits un­
der distraction, particularly at higher and typical walking speeds, 
but subjective impressions were less sensitive due to reduced at­
tentional capacity. These findings suggest that legibility remains 
valuable when users are inattentive. 

4 Discussion
Across two studies, we examined how intent should be repre­
sented for legible SRN and whether legibility remains effective 
under pedestrian distraction. Study 1 showed that widely adopted 
destination-based formulations [1, 7, 17, 18, 33] increased workload 
and produced less smooth human motion, whereas dynamically 
adaptive passing-side intent provided clearer cues for resolving 
head-on encounters. Study 2 confirmed that these objective bene­
fits persisted under distraction, with stronger effects at typical and 
higher walking speeds. Overall, the results suggest that legibility 
in navigation should prioritize real-time interaction coordination 
over predictability of the robot’s final goal.

Both studies were conducted in a controlled hallway with scripted 
one-on-one encounters, enabling precise comparisons while lim­
iting ecological complexity. Robot speed was capped at 0.33 m/s
for safety, consistent with prior constrained-space HRI studies [4,
10, 13, 20], likely reducing collision risk. Future work will evaluate 
faster platforms and multi-agent interactions in richer crowd set­
tings, and explore online estimation of human attentional state to 
balance efficiency and legibility alongside contextual factors such 
as environmental complexity, physical effort, and task urgency.
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