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Mobile robots struggle to integrate seamlessly in dynamic human environments, such as pedestrian scenes,
often hindering or blocking human paths and generally disrupting human activity. One of the obstacles pre-
venting smooth integration of robots in these environments is our limited understanding of how robot motion
in multiagent contexts affects human perceptions and inferences. Motivated by recent studies highlighting
the importance of intent-expressive motion generation for robots operating in close proximity with humans,
we describe Social Momentum, a planning framework for legible robot motion generation in multiagent
environments. We investigate the properties of robot motion generated by our framework with an extensive
evaluation methodology, including two large-scale user studies: a) an online, video-based study (N = 180)
evaluating the legibility of our framework, b) and a lab study (N = 105) involving a mobile robot navigating in
close proximity to groups of navigating humans. Through a statistical analysis of objective and subjective,
quantitative and qualitative measures, we present evidence suggesting that: a) motion generated by our
framework enables quick inference of the robot’s collision avoidance intentions; b) humans navigating close to
a robot running our framework follow low-acceleration paths; c) robot motion generated by our framework is
indistinguishable from a teleoperation baseline in terms of human perceptions. This article discusses detailed
experimental insights and lessons learned. This work aspires to inform and inspire the process of algorithmic
and experimental design for the development and evaluation of future social robot navigation frameworks.

CCS Concepts: •Human-centered computing→User models;User studies; • Computingmethodolo-
gies →Multi-agent planning;Motion path planning.
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1 INTRODUCTION
Imagine a crowded city street. It is easier to picture humans smoothly flowing with the crowd as
they navigate towards their destination. However, this skill of social navigation, which is so natural
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Fig. 1. Roadmap of evaluation followed in this paper.

and intuitive for humans, is challenging for robots to master. Indeed, the problem of enabling
robots to traverse crowded pedestrian environments in a socially competent fashion has received
considerable attention over the past three decades [45, 48, 62, 64, 70]. Deploying a mobile robot in
a human environment requires paying significant attention to topics related to human safety and
comfort. To this end, researchers drawn insights and frameworks from diverse fields ranging from
motion planning and prediction, to design research and social sciences.

Earlier work looked at mechanisms of reproducing collision-avoidancemaneuvers. Often, humans
are approximated as dynamic obstacles [24, 58] and the robot reacts to their motion or projected
future path to avoid collisions. This is known to result in problematic interactions [22]; humans are
intelligent agents with sophisticated mechanisms of inference and decisionmaking that are sensitive
to the motion of others. In fact, human navigation in crowds is known to be a highly cooperative
activity—humans tend to expect others to adjust their motion and share the responsibility for
collision avoidance [81]. Failing to account for the existence of suchmechanisms in humans is known
to result in suboptimal and often oscillatory robot behavior that appears to be uncomfortable [22, 73].
To account for human expectations, a body of work has focused on mathematically formalizing
and reproducing social norms such as passing from the right [37], respecting humans’ personal
space [38] or civil inattention [41]. In practice, the way humans navigate can be fluid and dependent
on the context (e.g., culture, type of environment, density of crowd) or variable across individuals.
Sometimes, physical constraints arise or social norms are violated but humans quickly and safely
adapt. Humans tend to follow subconscious insights and instincts but also social rules [28, 29, 81]
that are often hard to understand and quantitatively model in robots. Thus, enumerating and
reproducing a fixed set of social rules may be impractical for handling the complexity of real-world
situations.
Motivated by these observations, recent work has focused on incorporating models of multi-

agent interaction into the robot’s decision making. Some approaches [25, 66, 74] employ crowd
motion simulations [32] as prediction mechanisms for human motion. The behavior generated
by such models is dependent on a set of parameters defining considerations such as preferred
speed, proximity to others, etc. Tuning these parameters for navigation among humans is not
trivial. This has motivated a large body of work to learn models of pedestrian dynamics from data
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generated using simulation engines [32, 77], inverse reinforcement learning [43], gaussian process
regression [73], sequence-to-sequence models [49], or deep reinforcement learning [21]. While
some of these approaches are capable of producing safe robot motion in human spaces, they tend
to suffer from the high inherent complexity [15] (sample or computational) induced by reasoning
about the motion of multiple agents over a future time window at planning time. Further, their
emphasis is chiefly on collision avoidance, ignoring important aspects that govern interaction, such
as human perception and inference mechanisms.

Recently, a few studies have highlighted that legible robot motion tends to reduce the planning
effort [12, 44] and increase comfort and productivity [17] for nearby humans. Despite the recognized
value of legible robot motion for human-robot interaction applications, existing work has focused
on scenarios in structured domains involving a single human agent. However, navigation in real
world pedestrian spaces is inherently multiagent, motivating the development of new frameworks
for modeling and generating legible robot motion in the presence of multiple dynamic agents.
In this article, we take an interaction-first approach to social robot navigation. We present the

design principles, algorithmic formulation and extensive evaluation of a planning framework for
multiagent humans spaces. First, we introduce a representation inspired by the physical quantity of
angular momentum that factors the unfolding multiagent dynamics in a crowded scene into a set
of likely pairwise collision avoidance maneuvers between the robot and other agents. Based on this
representation, we design an objective function that quantifies the extent of the agreement between
a robot action and the perceived preferences of other agents over passing sides. By maximizing this
objective the robot may signal its intention of complying with these perceived preferences. Based
on this insight, we design a decision-making policy—called Social Momentum (SM)—that chooses
actions balancing between this objective and progress towards the robot’s destination.
Through an online video-based user study (N=180), we show that this type of decision making

can be perceived as legible in the sense that it enables an observer to quickly and confidently infer
the robot’s intention over a passing side. We then deploy this mechanism on a real robot and
evaluate its performance via a lab-study with groups of human subjects (N=105). Key findings
of this study include that: a) humans are more likely to follow low-acceleration paths next to a
robot running our framework compared to a set of baselines; b) our framework is perceived just
as well as a Wizard-of-Oz baseline in which a human operator teleoperates the robot. Our overall
findings suggest that even a simple interaction-aware policy can be sufficient for navigation in
close proximity with humans in selected settings. While our policy may struggle in more complex
domains, it does not impose strong requirements on datasets or on-board computation like existing
state-of-the-art approaches. A visual roadmap of the studies described is presented in Fig. 1.

1.1 Contributions
In summary, with this article, we make the following contributions that expand upon our prior
work [50, 54]:

• We conduct an extensive review of related work on algorithmic approaches to social robot
navigation, clearly placing our framework with respect to the rich literature in the field
(Sec. 2).
• We present a unified discussion of our work on the design and evaluation of our Social
Momentum framework [50, 54]. We clearly lay out the principles from psychology and
sociology literature that inspired our approach (Sec. 3) and build upon them to frame our
algorithm design (Sec. 4).
• We conduct a new, extended statistical analysis of the Likert-scale questionnaire dataset
collected in our lab study [50] to better understand the perceptions of humans about a robot
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Fig. 2. The key idea of our framework: achieving consensus over a joint strategy of collision avoidance using
the robot’s path shape as a communicative modality.

navigates close to them (Sec. 7.1). Through a factor analysis methodology, we show that
human perceptions of robot behavior are driven by impressions along five key categories,
namely social competence, intelligence, human comfort, predictability and discretion.
• We conduct a qualitative thematic analysis of the dataset extracted from responses of par-
ticipants to open-form questions collected in our lab study [50] (Sec. 7.2). We elaborate on
participants’ attitudes towards the robot which revolve along key themes such as robot
navigation intention, proximity, robot performance and human emotions.
• We concludewith a comprehensive, unified discussion of all findings.We include experimental
insights, lessons learned and discuss their implications for the future of social robot navigation
research (Sec. 8).

2 RELATEDWORK
Robot navigation in crowded human environments requires a series of algorithmic components in-
cludingmotion prediction, motion planning, and control, among others. As such, research in the field
interfaces with a number of neighboring communities including crowd simulation, path tracking,
trajectory prediction, multirobot systems, autonomous driving, and more. Further, the inherently
close interaction between the robot and human subjects motivates the incorporation of features
related to social awareness and comfort. Thus, social robot navigation also interfaces significantly
with the field of design, and often draws insights from psychology, sociology, and human-robot
interaction. Taking into account these interfaces, in this literature review, we specifically focus
on frameworks that were developed to be deployed on real robots in crowded environments. We
review relevant works, highlighting their algorithmic foundations and evaluation methodologies.

2.1 Initial Efforts: Humans as Obstacles
First efforts in the field of social robot navigation were motivated by specific real-world applications.
For instance, Rhino [10] and Minerva [72] were some of the first known robotic systems to be
deployed as tour guides in museums in Bonn, Germany, and Washington D.C., USA, in 1997
and 1998, respectively. These robots successfully served thousands of tour guide requests, and
navigated alongside museum visitors over a span of weeks. Their performance set the stage for
real-world challenges, such as the AAAI Mobile Robot Challenge, organized by the American
Association for Artificial Intelligence, which attracted wide interest and participation [55, 57].
Although these deployments featured remarkable system development and integration efforts,
their underlying navigation frameworks [24, 58] treated humans as non-reactive obstacles without
explicitly modeling interaction phenomena or humans’ decision-making strategies. This assumption
has generally sufficed to provide a practical solution to the crowd navigation problem, and it has
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inspired a significant amount of research over the years [7, 23, 61]. However, it has been empirically
observed that this assumption can create practical problems including the so-called “reciprocal
dance" [22]: the failure of the robot to infer the human’s intended motion results in the robot
choosing a velocity that emerges as surprising to the human, who in turn reacts unpredictably to
the robot, contributing to a short oscillatory interaction. Such issues motivated the introduction of
models for reasoning about uncertainty in crowd navigation.

2.2 Reasoning about Uncertainty
Motivated by the practical issues caused by the lack of predictive models, a second wave of efforts
on the crowd navigation problem focused on methodologies for reasoning about uncertainty. For
instance, Du Toit and Burdick [18] present a receding-horizon control framework that incorporates
predictive uncertainty in the robot’s decision making. Thompson et al. [71] introduce a probabilistic
model of human motion based on individual human intent inference, designed to assist in motion
planning problems. Joseph et al. [34] propose a Bayesian framework reasoning about individual
human motion patterns to inform a motion prediction pipeline. Similarly, Bennewitz et al. [8]
extract patterns of human motion in a crowded environment and derive a hidden Markov model
to perform online human motion prediction. Unhelkar et al. [76] introduce a motion prediction
framework that makes use of biomechanical features to anticipate human turning actions.
Despite the introduction of principled models for reasoning about uncertainty, these works

treat human agents as individual non-interactive entities. The lack of explicit coupling over the
possible motion of human agents often results in an uncertainty explosion as observed by Du Toit
and Burdick [18]. In practice, this may cause the robot to overestimate the uncertainty over the
unfolding crowd motion, and thus falsely infer that no collision-free paths exist. This phenomenon
may effectively yield the freezing robot problem as described by Trautman et al. [73] who pointed
out that a practical way to resolve it is to enable the robot to explicitly expect human cooperation.

2.3 Interaction in Social Robot Navigation
Motivated by phenomena such as the reciprocal dance [22] and the freezing robot problem [73],
a relatively recent wave of work focuses on explicitly modeling interaction. Unlike conventional
instances of the robot navigation problem which take place in isolated, structured environments,
social robot navigation takes place in domains that are inherently dynamic, multiagent, and
uncertain. Modeling the interaction dynamics among a set of multiple navigating agents is a
computationally hard problem—related instances of the problem such as inference over dynamic
Bayesian networks [15] have been shown to be NP-hard. However, humans are remarkably effective
in avoiding conflicts with others in crowded domains. Human effectiveness is largely attributed
to sophisticated mechanisms of cooperation [28, 35, 81], often realized implicitly via channels of
implicit, nonverbal communication [4, 16, 80].

2.3.1 The Human Paradigm. Several sociology studies on pedestrian navigation have pointed
out the cooperative character of collision avoidance in crowds. From a broad perspective, Karp
et al. [35], in their definition of the Mini-Max Hypothesis of Urban Life, specify that “urbanites
seek to minimize involvement and to maximize social order". Goffman [28] tailors this idea to
crowd navigation in his concept of “civil inattention": upon acknowledging the presence of a fellow
pedestrian via eye gaze, a pedestrian often looks away “so as to express that he does not constitute
a target of special curiosity or design". This process hints towards the existence of some form of
trust across pedestrians: trust that the responsibility for collision avoidance will be shared by both
agents. Building on this concept, Wolfinger [81] introduces the concept of the pedestrian bargain to
describe the mechanism of trust that sustains social order in crowd navigation. This mechanism
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is based on two simple rules: 1) “people must behave like competent pedestrians" and (2) “people
must trust co-present others to behave like competent pedestrians". Trust in the rules of the bargain
constitutes the basis of smooth co-navigation in human environments as it enables pedestrians to
plan with the expectation that others will also behave competently and thus cooperate to resolve
potential conflicts. On top of these ideas, the theory of Proxemics by Hall [31] specifies a series of
considerations related to social spaces and comfort in public places.

2.3.2 Reproducing Social Conventions. Some works have focused on generating motion that repro-
duces selected social conventions and norms observed in human navigation. For instance, Kirby
et al. [39] introduce a constrained optimization-based algorithm that incorporates considerations
of passing side and personal space [31] into the robot’s decision making. Sisbot et al. [67] present
a cost-based planner that employs a set of social costs to generate motion that is visible and safe
around humans. Knepper and Rus [42] distill the concept of civil inattention [28] into a multirobot
path planner.

2.3.3 Modeling Interaction. Some other works focus on capturing the dynamics of interaction
to inform prediction and planning. For example, Warren [79] introduces a dynamical systems
approach describing organization across tasks including human navigation. Luber et al. [47] learn
a set of dynamic navigation prototypes and use them to design dynamic costmaps that capture
objective and subjective human navigation objectives. Moussaïd et al. [59] employ behavioral
heuristics to model pedestrian behavior in public spaces and show how humans adjust their speed
and directionality guided by distance-based visual features. G. Ferrer [25] integrate human motion
predictions generated with a Social Force model [32] variant into a sampling-based planning
framework. The works of Ziebart et al. [82], Vasquez et al. [78], Henry et al. [33], Kim and Pineau
[37], and Kretzschmar et al. [43] employ inverse reinforcement learning as a technique to recover
features of human navigation objectives and use them to design motion planners for humanlike
robot navigation in a variety of scenarios. Trautman et al. [73] introduce a Gaussian Process-based
model for motion prediction that accounts for interdependencies arising as a result of human
cooperative collision avoidance and show how it can be used to enable safe robot navigation in
dense crowds. Chen et al. [14], Everett et al. [21] present deep reinforcement learning models that
implicitly capture elements of cooperative collision avoidance from observations of multiagent
interactions. Che et al. [13] integrate modalities of explicit and implicit communication into amotion
planner to generate plans that are easier for humans to read. Finally, focusing on autonomous
driving domains, Sadigh et al. [65] and Roh et al. [63] show that a motion planner with a model of
multiagent dynamics may leverage communicative signals encoded in robot motion to influence
the behavior of other vehicles. We note that there has been relevant work in this domain from the
field of social motion prediction [64], but the focus there is not on robot navigation but rather on
object tracking.

2.3.4 Our Perspective: Leveraging the Mathematical Structure of Interaction. Our past work [49, 52,
53] introduces a unique perspective in social robot navigation, proposing frameworks that explicitly
model cooperative collision avoidance in multiagent navigation through the use of mathemati-
cal representations inspired by work in low-dimensional topology. Topological representations
elegantly capture salient features of multiagent interactions into objects of dual algebraic and geo-
metric nature, enabling the use of both symbolic reasoning and learning techniques. For instance,
we employed topological braids [3, 9] to develop motion planners that explicitly reason about the
unfolding topological patterns of multiagent interactions in crowded domains [49, 51, 53]. The high
computational cost of these methods motivated us to look for more tractable alternatives. To this
end, we employed alternative formalisms such as winding numbers [52] and angular momentum
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[50, 54] as approximations of multiagent interaction dynamics that retain the benefits of topological
reasoning at a low computational cost. In this paper, we expand and build upon our analysis of the
performance of our Social Momentum motion planner [54], presenting additional quantitative and
qualitative evidence.

2.4 Experimental Evaluation in Algorithmic Social Robot Navigation
Deployment and experimental testing in the presence of humans is an important component of
evaluating social robot navigation frameworks. In this section, we summarize the methodologies
applied by published studies over the past three decades and argue for the uniqueness of the
experimental procedure followed by our work. Broadly, we observe three main trends in existing
validation methodologies: a) works illustrating proof-of-concept demonstrations in lab environ-
ments or public settings; b) studies presenting controlled experimental validation in the lab; c) field
studies conducted in public environments.

2.4.1 Experimental Demonstrations. A number of works validate their proposed approaches via
proof-of-concept demonstrations in the presence of humans. For instance, Bennewitz et al. [8] report
a series of 10 experiments involving interactions between a mobile robot and navigating humans
under semi-controlled settings in a hallway. Sisbot et al. [67] document a series of navigation
interactions between a robot running their framework and a human in a lab environment. Park et al.
[61] test their control framework on a robotic wheelchair inside a corridor of an academic building
and report a set of successful collision-avoidance encounters. Kretzschmar et al. [43] also deploy
their model on a robotic wheelchair documenting a set of experiments in a narrow hallway under
controlled settings. Chen et al. [14] document an experimental demo involving a robot navigation
experiment in a crowded area of an academic building.

2.4.2 Lab Studies. Pacchierotti et al. [60] test their control framework with a study involving an
autonomous robot navigating next to human subjects at a corridor under controlled settings. They
present their findings from the interactions of 10 participants with a robot exhibiting different nav-
igation strategies corresponding to different passing distances. Kirby [38], Kirby et al. [39] present
a user study involving 27 human subjects navigating alongside a robot in an academic hallway.
Kruse et al. [44] document a series of interactions between a mobile robot and a human subject
in a lab study involving 10 participants. Truong and Ngo [74] document a series of interactions
between a robot running their planning algorithm and human participants in a lab environment.
Our past work [50] featured an experimental validation of our planning framework [54] in a lab
experiment involving interactions between a navigating robot and three human subjects at a time
in dense navigation settings, yielding a total sample of 105 participants. Lo et al. [46] evaluate a
series of robot collision-avoidance strategies on a self-balancing mobile robot in a lab study with
98 human subjects.

2.4.3 Field Studies. Another common approach involves deploying robots in the wild in public
environments. Burgard et al. [10] deployed the Rhino guide robot in the Museum of Bonn in
Germany in 1997 and documented thousands of in-person and virtual interactions between the
robot and visitors over 47 hours of runtime spanning 6 days. Thrun et al. [72] deployed Minerva,
a second-generation robot tour guide, at a Smithsonian Museum in Washington, D.C., USA, in
1998 and also documented thousands of interactions with visitors for two weeks. Both studies
documented statistics related to performance, collision avoidance and visitors’ impressions of the
robot. Foka and Trahanias [23] report logs and performance aspects upon running their robot for
70 hours in an indoor academic building. Shiomi et al. [66] test their navigation framework through
a 4-hour field study in a shopping mall. Trautman et al. [73] test their navigation framework on
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a robot in a field study comprising 488 robot runs in a crowded cafeteria. Kato et al. [36] test
their approach on a humanlike robot employee in a crowded mall and record interactions with
130 people. Kim and Pineau [37] evaluate their framework on a robotic wheelchair in a crowded
hallway over 10 field runs.

2.4.4 Our Approach: Extensive Subjects Research. This paper documents our efforts in experimen-
tally validating our Social Momentum planning framework [54]. Our experimental evaluation is
split across two main studies: a) an online, video-based user study which involved 180 human users;
b) a lab study featuring 105 human subjects navigating in close proximity with a telepresence robot
[1]. To the best of our knowledge, our evaluation is unique in terms of sample size, experimental
settings considered (close but controlled interactions in a dense environment), goals (evaluation of
group interactions with a navigating robot), and thoroughness. We employ both quantitative and
qualitative measures of interaction, aiming at documenting an in-depth, holistic insight over the
features of our approach. Our empirical findings and remarks may help inform the design of future
studies for evaluating social robot navigation frameworks.

3 FOUNDATIONS
Consider a robot r navigating in an obstacle-free workspace Q ⊂ R2 where n human pedestrians
are also navigating. Denote by q ∈ Q the state of the robot and byhi the state of a human pedestrian
i ∈ N = {1, . . . ,n}. The robot starts from a state sr ∈ Q and navigates towards a destination
dr ∈ Q. Similarly, human i starts from state shi ∈ Q and navigates towards a destination dhi ∈ Q.
Each agent a ∈ {r ,h1, . . . ,hn} is following a control policy of the form πa : Q→ Va mapping their
current state qa to a control input (velocity) va ∈ Va , where Va is a space of velocities. This policy
is assumed to account for a) progress to destination; b) collision avoidance; c) social compliance.
Agents are not aware of each other’s policies, destinations or trajectories a priori but are assumed
to be able to perfectly observe each others’ state. Our goal is to design a policy πr that enables the
robot r to reach dr while avoiding hindering co-navigating humans. In particular, we are interested
in enabling the robot to avoid collisions but also navigate in a way that is perceived as socially
competent by nearby humans.

3.1 Socially Competent Navigation as Cooperative Intent Expressiveness
How can we engineer robot motion that is perceived as socially competent in a dynamic multiagent
environment? Although there is no clear consensus among researchers about an exact and unifying
definition of what constitutes socially competent behavior in a navigation domain, we build our
framework around foundations extracted by studies from the social sciences and human-robot
interaction research. In particular, our perspective is driven by three key observations: a) social order
in pedestrian navigation in crowds appears to rely heavily on cooperation [81]; b) from early age,
humans develop mental models that enable them to interpret observed actions by assigning them
context-specific goals [16]; c) intent-expressive robot motion in joint human-robot collaboration
tasks improves performance [12]. Based on these insights, a central thesis in our approach is
that under the assumption of human cooperation (rationality) in navigation, intent-expressive
robot motion with respect to an appropriately defined notion of a goal may enable more efficient,
minimally disruptive human-robot interactions.

3.1.1 Cooperation. We follow the insights of the sociology studies highlighting the cooperative
nature of human navigation as described in the Mini-Max Hypothesis of Urban Life [35] or the
Pedestrian Bargain [81]. We view these insights as guiding principles to our design. By explicitly
modeling cooperation, we can enable a robot to cooperate with and expect cooperative behavior
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from nearby humans, much like humans themselves do. We hypothesize that by doing so, we could
enable robots to blend in more naturally in pedestrian spaces.
For our purposes, cooperation corresponds to the shared responsibility between the robot and

humans for avoiding collisions with each other.

3.1.2 Inference. Cooperation in crowd navigation relies heavily on the extraction of inferences
about the motion of others. For humans, these motion inferences may be quite sophisticated,
conducted by mechanisms shaped by evolution, personal experience, context, the understanding of
biomechanical constraints, etc. However, at their core, these inferences seem to follow a specific
blueprint: humans, from an early age tend to innately interpret observed actions as goal-directed [16]
in a given context.

Despite their typically limited past experiences with robots and understanding of robot kinemat-
ics, dynamics, and computational capabilities, we hypothesize that non-expert humans may still
be able to connect simple robot actions to robot intent. Conversely, in our setup, we expect the
human motion to be indicative of the human intent.

3.1.3 Legibility. Legibility [17], or Readability [12], is an important property of motion in tasks
conducted in the presence of a human observer. Dragan and Srinivasa [17] defined Legibility as the
property of motion that enables an observer to infer quickly and confidently the correct goal of
an actor, given observation of the actor’s past actions. Humans employ a variety of modalities to
express intent—body posture, eye gaze, gestures, and verbal communication are only a subset of the
information streams that humans may leverage to broadcast intention signals. Robots are limited in
the set of modalities available for communication of their intentions by their design. For this reason,
manyf human-robot interaction applications feature implicit communication mechanisms [40]
encoding robot intent into otherwise purely functional motion. In these applications, implicitly
communicative robot motion has been shown to enable effective human-robot collaboration [12]
and reduced planning effort for humans [11].

In our application, we assume that the robot may only use the modality of navigation path shape
to communicate, due to its universality in mobile robot platforms.

3.1.4 What is the proper notion of a goal? A central notion in the emergence of inferences [16]
and the generation of legible motion [17] is the notion of a goal or intent. Existing works on legible
motion generation tend to associate the notion of a goal or intention with a point in a configuration
space (e.g. [17, 44]). In a static and structured environment, where the dynamics of interaction
among agents is predictable or known a priori, this is a well-motivated modeling decision, as the
observers’ belief could be assumed to be an isolated relationship between an observed motion
and a potential destination. However, in dynamic and unstructured environments, such as typical
pedestrian navigation domains, where the dynamics of interaction among multiple agents is rich,
knowledge only of an agent’s destination may be insufficient to inform others of the agent’s
immediate behaviors. This highlights the need for a new consideration of legibility that captures
interactions with neighboring agents.
Past work of ours has employed topological representations such as braids [49, 51, 53] and

topological invariants [52] to encode intentions in multiagent navigation settings. However, the
high computational cost associated with running those algorithms motivated us to pursue tractable
approximations that would retain the salience of topological features. To this end, we developed
the Social Momentum (SM) planning framework [54], which employs a physics-inspired approach
to encoding the topology of passing side in navigation as the angular momentum between a pair of
agents.
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(a) Despite the ambiguity, the robot detects a slight
inclination towards the right hand side.

%

right left

(b) The robot’s legible maneuver resolves the ambi-
guity and reinforces a right hand side passing.

Fig. 3. Social Momentum. A human and a robot navigate towards opposing sides of a workspace. The initial
configurations of the agents make it hard for the human to predict the emerging avoidance strategy (“right”
or “left”). The robot detects a slight inclination towards the “right” strategy and acts legibly to facilitate
human inference.

4 SOCIAL MOMENTUM: A PLANNER FOR LEGIBLE ROBOT NAVIGATION
In this section, we recap the Social Momentum (SM) planning framework [54]. The planner is based
on modeling pairwise passing-side intentions as angular momenta. Under this model, our planner
generates legible motion that attempts to reconcile the (potentially incompatible) human-robot
passing-side intentions.

4.1 Angular Momentum for Collision Avoidance
Consider the scene of Fig. 3, where a robot r and a human h navigate in an obstacle-free workspace.
The robot lies at qr , moving with velocityvr , whereas the human is positioned at qh and moves with
velocity vh . The two agents form a dynamical system—representing them as unit-mass particles,
we may derive the angular momentum of the system as:

Lrh = pCr ×vr + p
C
h ×vh (1)

where
pCr = qr − pC , pCh = qh − pC (2)

are agents’ positions, defined with respect to their center of mass

pC = (qr + qh) /2. (3)

For a system of two agents on the horizontal plane, the angular momentum is a 3-vector normal
to the plane, pointing along the positive direction of the z-axis for counterclockwise agent rotations
(see Fig. 3) and along the negative direction of the z-axis for clockwise rotations. These correspond
to the agents passing on the right and left hand side of each other respectively. The magnitude of
the momentum depends jointly on the distance between the agents and also on the relative angle
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Fig. 4. Social Momentum: The robot (depicted in red color) is moving towards its destination (represented as
a red landmark). while complying with its pairwise momenta with all other agents.

between agents’ velocities. Inspecting (1), we can see that larger distances and antiparallel velocities
increase |Lrh |. Thus, the angular momentum is indicative of the tendency of two agents for picking
a passing side—the larger the magnitude | |Lrh | |, the higher the certainty over the passing side given
by the sign of Lrhz , the z-component of Lrh .

4.2 The Social Momentum Algorithm
This intuition represents the key insight underlying the design of our planner. By contributing
towards increasing the magnitude of the angular momentum along its current directionality, an
agent reinforces the currently established passing side. Generalizing to a multiagent environment,
by selecting an action vr ∈ Vr which increases the magnitude of the pairwise momenta with all
other agents hi , i ∈ N , the robot reinforces the currently established sides of passing. To enable this
decision-making strategy, we construct the Social Momentum objective L : Vr → R, defined as:

L(vr ) =
{∑

i wi | |L̂
rhi (vr )| |, if (Lrhi )⊤L̂rhi (vr ) > 0, ∀i ∈ N

0, otherwise
, (4)

where L̂rhi (vr ) denotes the expected pairwise momentum between agents r and hi , upon the robot
taking an action in consideration,vr , and the human hi moving with its current velocityvhi . Lrhi is
the current pairwise momentum between r and hi , andwi ∈ R is an importance weight prioritizing
reacting to agents that are closer. The sign of the quantity (Lrhi )⊤L̂rhi (vr ) determines whether the
projected updated momentum L̂rhi (vr ) is pointing towards the direction of the current momentum
Lrhi . A positive sign corresponds to an action that preserves the current momentum sign and thus
the currently preferred pairwise avoidance protocol. A negative sign indicates inversion of the
established pairwise avoidance protocol, which is undesired. For this reason, an action that results
to inversion of at least one pairwise momentum is assigned a score of zero.
The Social Momentum objective is the core of the Social Momentum planning algorithm (SM).

The planner balances between intent-expressiveness (represented by L) and efficiency, represented
by an efficiency function E . The algorithm relies on frequent replanning: at every planning cycle,
it selects an action that corresponds to the optimal compromise between progress to the agent’s
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Algorithm 1 SM(qr ,Q,Vr ,dr ,AtGoal ,v
∗
r )

Input: qr − robot state; H = (h1, . . . ,hn) − list of human agents; Q =
(
qh1 , . . . ,qhn

)
− list of

human states; Vh =
(
vh1 , . . . ,vhn

)
− list of human velocities; Vr − robot action set; dr − robot

destination; λ − optimization weight; δ − destination distance threshold.
Output: v∗r − velocity selected
1: R← H ▷ List of reactive agents
2: while | |qr − dr | | > δ do
3: Vcf ← check_collision(R,Q,V)
4: R← update_reactive(Q,Vh ,R)
5: if R , ∅ then
6: v∗r ← optimize_momentum(Q,Vcf , λ,dr )
7: else
8: v∗r → optimize_efficiency(Vcf ,dr )

9: return v∗r

destination and legible avoidance of others:

v∗r = argmax
vr ∈Vr

E (vr ) + λL(vr ), (5)

where λ ∈ R is a temperature parameter accounting for scaling and weighting of the two quantities.
As shown in (4), if an action results in inversion of momentum between the robot and at least one
other agent, it will be scored minimally (zero). In case all actions are momentum-inverting, the
action selected for execution will be purely based on the efficiency objective for that time step.
Under the assumption of cooperation [81], humans will share the responsibility of avoiding an
imminent collision with the robot and they will react with actions that contribute towards collision
avoidance. Gradually, the system of agents will converge to an equilibrium satisfying the updated
preferences of all agents.

We define the progress function E : Vr → R to be the inverse of the length of the unobstructed
line to the agent’s destination. The action space Vr comprises a pre-sampled discrete set of actions
of finite duration that are executable by the agent. Finally, the weightwrhi is chosen as the inverse
of the distance between the robot r and agent hi .

Algorithm 1 describes the SM algorithm in pseudocode. At the start of execution, the algorithm
initializes a list of reactive agents R to contain all perceived human agents. While the robot is
further than a distance threshold δ from its destination, a replanning cycle runs. The function
check_collision tests the action space V for collisions with human agents and returns a set
Vcf ⊆ V of collision-free actions under the assumption that agents maintain their velocities for the
next timestep. Then, function update_reactive determines the subset of agents R to which the
planning agent should be reacting: only agents that lie in front of the planning agent (i.e., agents
lying from −90◦ to +90◦ from the robot’s direction of motion – see Fig. 4) are considered . In case
R , ∅, the planning agent determines a legible action v∗r by compromising between Progress
to destination and Social Momentum (function optimize_momentum); otherwise, the algorithm
switches to progress maximization mode (function optimize_efficiency). Termination occurs
once the agent comes closer than δ to its destination.

4.3 Simulation Study
We conduct a simulation study in which we examine the properties of motion generated by SM
in scenarios involving multiple agents navigating in close proximity. Our goal is to understand
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(a) Agents’ initial states (circles)
and destinations (landmarks).

(b) High topological complexity,
low path irregularity.

(c) Low topological complexity,
high path irregularity.

Fig. 5. Simulation setup. Four agents, represented as colored disks, are placed along the circumference of
the circular workspace. Each agent is headed towards the landmark of the same color. Fig. (a) illustrates the
initial scenario state. Fig. (b) depicts an execution with high Topological Complexity index but low Path
Irregularity. Fig. (c) depicts an execution with low Topological Complexity index but high Path Irregularity.

features of collective behavior that could affect the perceptions of human observers over agents’
intentions.

4.3.1 Experimental Setup. We consider a setup in which groups of holonomic homogeneous agents
(agents running the same navigation algorithm) navigate in a shared circular workspace (Fig. 5a).
We specifically design navigation scenarios giving rise to complex multiagent encounters. Each
scenario is generated through the following steps: (1) the workspace circumference is partitioned
into n arcs of equal length; (2) each arc is assigned to an agent; (3) each agent is placed at a random,
collision-free starting position on their arc; (4) each agent is assigned a destination that is antipodal
to their starting location and lies on the workspace circumference. The workspace boundary is
a circle with a diameter of 5m, whereas the agents are discs of diameter 0.6m. We consider four
different classes of scenarios, each corresponding to a different number of agents, ranging from
three to six. For each class, we generate 200 scenarios at random.

4.3.2 Conditions. We consider three experimental conditions: (1) Social Momentum; (2) Social
Force (SF) model [32]; (3) Optimal Reciprocal Collision Avoidance (ORCA) framework [77]. Each
condition corresponds to a different algorithm executed by all agents. The three algorithms selected
represent distinct algorithmic designs resulting in behaviors with qualitatively distinct properties:
ORCA is theoretically and empirically shown to prioritize efficient behaviors; SF is purely reactive
and often follows highly suboptimal paths to avoid collisions; SM was designed to exaggerate
motions to increase intent expressiveness over passing sides. Note that the SF and ORCA baselines
are algorithms designed to produce realistically looking crowd simulations and not to produce
legible motion in multiagent scenarios. However, to the best of our knowledge, our planner is the
first framework designed to automatically produce legible motion in multiagent settings of close
interaction. In the absence of a directly relevant baseline, SF and ORCA allow us to directly relate
to the literature as they are commonly employed for benchmarking algorithms in the areas of
multirobot navigation and social navigation [21, 43, 47, 74, 78].

We empirically tuned the parameters for all algorithms to ensure a fair comparison. To tune the
parameters, we payed special attention at the emerging average clearance and speed. Note that for
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(a) Curve diagram for σ−11 . (b) Curve diagram for σ−11 σ2.

Fig. 6. Curve diagrams for braids of different complexity (top). The braid σ−11 σ2 depicted in (b) is more
complex (TC = 2) than the braid σ−11 (TC = 1.585) shown in (a). This is reflected in the increased number of
intersections between the curve diagram σ−11 σ2 · E and the x-axis (dotted line).

different algorithms, the notion of preferred or maximum speed affects performance to different
degrees. We note the parameters here for completeness:

• SF: v0 = 1.5m/s , σ = 0.5m, Vab = 21m2s−2, tau = 0.4s , vmax = 2.5m/s , UaB0 = 5m,
R = 0.2m, ϕ = 180 deg, c = 1, ∆t = 0.1s .
• ORCA: neighborDist = 3, maxNeighbors = 10, timeHorizon = 2s , timeHorizonObst = 2s ,
radius = 0.35m, maxSpeed = 1m/s .
• SM: We used an action set of 50 actions of fixed speed v = 1.2m/s , λ = 0.11. The weightwi
was defined to be the inverse of the distance between the robot and agent i . We normalized
these weights across agents so that

∑n
i wi = 1. We also normalized the metrics of (5) to

control their range of values.

4.3.3 Metrics. We consider two metrics, each targeting a different aspect of trajectory quality:
a) the Topological Complexity index [19] and b) the Path Irregularity index [30]. These metrics
complement each other, capturing respectively topological and geometric properties of multiagent
interaction that may drive human perceptions with respect to agents’ intentions.

Topological Complexity Index. In past work [53], we have showed that the motion of multiple
navigating agents can be abstracted into a topological braid [9] by projecting their trajectories
(represented as sequences of (x ,y, t) tuples) onto a selected spatiotemporal plane and tracing any
crossings that emerge among them. The emerging object is a set of strings entangled with each
other in a way that reflects the way agents’ trajectories entangled over time as agents navigated
towards their destinations. The pattern that a braid describes can be simple when the strings do
not entangle significantly with each other or complex when they do. This can also be true for
the trajectories of agents –when agents mix with each other in close proximity, their trajectories
become more strongly entangled over time (see Fig. 5). The Topological Complexity index, proposed
by Dynnikov and Wiest [19], quantifies the complexity of the entanglement of a topological braid.
In this work, we use it to quantify the complexity of the entanglement of agents’ trajectories in a
navigation domain: first, we map a set of agents’ trajectories onto a topological braid β by projecting
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their trajectories onto the x-t plane1 and scaling them to the time window from t = 0 to t = 1 as
described in our earlier work [53]. It might be helpful to think of this projection as the the motion
of a set of particles from time t = 0 to time t = 1 (Fig. 6 depicts example braids). Then, denote by D2

a closed disk surrounding the initial positions of the particles, and by E a set of n − 1 disjoint arcs,
anchored on the disk, that clearly separate the particles for time t = 0, defining n distinct regions in
the disk (see Fig. 6). Assume that these regions are rigidly attached to the particles. As the particles
follow the motion described by the braid β from t = 0 to t = 1, the regions dynamically deform.

A curve diagram of a braid is the image D = β · E of E corresponding to the regions obtained by
applying the motion described by β on E (see Fig. 6). The norm of a curve diagram D is defined
as the number of intersections of D with the x axis. The Topological Complexity index of a braid
β ∈ Bn is defined as:

TC(β) = log2(| |β · E | |) − log2(| |E | |). (6)

This expression is equivalent to the logarithm of the increase in the number of intersections between
the x-axis and the arcs E upon the application of a braid β .
Intuitively, TC measures how much the motion corresponding to a braid twists or mixes the

regions around each initial point, describing (in our context) how much agents move past each
other. Fig. 6 depicts the curve diagrams induced by applying motion described by two different
braids on the canonical curve diagram E. Fig. 5b and Fig. 5c illustrate examples of high and low
Topological Complexity respectively. We see that high TC values describe scenarios in which agents
directly mix with each other as they navigate towards their destinations whereas low TC values
describe scenarios in which agents avoid interacting with each other. Qualitatively, we may observe
that high-TC behaviors make it hard to predict agents’ passing sides—agents navigate through the
center of the workspace without showing inclination towards a collision-avoiding passing side.
In contrast, low-TC agents appear easier to infer—agents show early and consistent inclination
towards a passing side. These properties make TC relevant to studying the Legibility of robot
motion in multiagent scenarios. Sec. 5 investigates this connection using data from human subjects.

Path Irregularity Index. The path irregularity index, proposed by Guzzi et al. [30], characterizes
the geometric inefficiency of agents’ trajectories. Specifically, it is computed as the average amount
of angular divergence between an agent’s heading and its direction to its destination per unit path
length, averaged per agent:

PI (Ξ) =
1
n

n∑
i

∑T
1 θ

i
t

Li
, (7)

where Ξ = (ξ1, . . . , ξn) is a tuple containing agents’ trajectories ξi , i ∈ N , θ it is the angle difference
between the velocity of agent i and the direction to its goal at time t , Li is the total length of the
path followed by agent i , and T is the total time of the experiment. Measured in rad/m, the higher
PI gets, the higher the geometric inefficiency of an execution. Fig. 5b and Fig. 5c illustrate examples
of low and high Path Irregularity.

4.3.4 Analysis. Fig. 7a depicts the average Topological Complexity for each planner and class of
scenarios considered. The Topological Complexity of SF and ORCA appear to consistently rise
with the number of agents. In contrast, SM exhibits a slower rise: the transitions between 3 and
4 agents and between 5 and 6 agents have almost constant complexity, with the only rise taking
place in the transition between 3 and 4 agents. Overall, SM achieves consistently lower topological
entanglement with statistical significance, except from the case of 3 agents, where the scenarios are

1As long as we are consistent throughout experiments, the choice of projection plane does not make a difference [68].
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(a) Topological Complexity for each scenario class. (b) Path Irregularity per agent for each scenario class.

Fig. 7. Comparative evaluation of the selected simulation frameworks (SM: Social Momentum, SF: Social Force
and ORCA: Optimal Reciprocal Collision Avoidance) over four different classes of scenarios involving 3, 4, 5,
and 6 agents respectively. Within each class, 200 randomly selected scenarios are executed and evaluated
with respect to Topological Complexity (a) (a theoretical lower-bound baseline is included for reference), and
Path Irregularity (b). Each point on the graph represents the average value over all 200 experiments for the
class.

not geometrically challenging enough to yield significantly diverse behaviors. Detailed statistics of
paired t-tests conducted for the SM-SF and SM-ORCA pairs are reported in table 1.
For reference, we also include a lower bound on Topological Complexity corresponding to a

centralized planning baseline from our past work [53]. This baseline generates a path between
agents’ initial and final states involving the minimum number of swaps in the order of agents
along the x-axis (the same axis used to generate the braids used for the computation of TC along
all experiments). The lower bound value (TC = 1.5850) is an artifact of the selected scenarios
(traversal between antipodal locations) and corresponds to the ideal case in which agents reach
their destinations in a coordinated way that avoids trajectory entanglements (see Fig. 5c for an
example). In practice, we see that all planners are suboptimal with respect to the lower bound
baseline which reflects the price of no explicit communication across agents.

t-Tests Topological Complexity Path Irregularity

Num. of agents Pair t-value p-value t-value p-value

3 SM-SF -2.497 0.013 -26.397 < 0.001
SM-ORCA -0.593 0.553 9.197 < 0.001

4 SM-SF -7.963 < 0.001 -34.514 < 0.001
SM-ORCA -5.740 < 0.001 17.336 < 0.001

5 SM-SF -9.424 < 0.001 -41.400 < 0.001
SM-ORCA -5.395 < 0.001 7.934 < 0.001

6 SM-SF -11.561 < 0.001 -51.430 < 0.001
SM-ORCA -5.250 < 0.001 0.152 0.879

Table 1. Statistics of paired t-tests between policies for different agent numbers.

Fig. 7b depicts the average Path Irregularity per agent, for each planner and class of scenarios
considered. Although for all planners the path irregularity rises with the number of agents, each
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planner performs differently. The different performance of each planner is indicative of the distinct
philosophies with which they have been designed. SF, lacking predictive mechanisms, yields
significantly more irregular paths than SM and ORCA. ORCA achieves consistently the lowest path
irregularity, as a result of its geometrically optimal behavior, which in practice results in minimal
divergence from the unobstructed line connecting an agent with its destination at any time. SM
performs slightly worse than ORCA, as a result of its consideration of collision avoidance as a
rotation; SM agents diverge from their shortest paths more often to convey intent. For the case of 6
agents the geometric complexity of the scenarios is too intense even for ORCA which performs
almost equally to SM.
The findings from our simulation study suggest that SM produces generally less topologically

complex trajectories in multiagent scenarios than two other baselines from the area of multiagent
navigation.

5 SOCIAL MOMENTUM GENERATES LEGIBLE MOTION
In a multiagent domain, the actions of navigating agents contribute to the formation of inferences
on others. For instance, from the motion of agents in Fig. 5b, it is unclear—until later in time—
how they intend to avoid each other, as they all appear to be travelling through the center of the
workspace. In contrast, the motion of agents in Fig. 5c demonstrates an emergent organization that
facilitates inference of how they intend to avoid collisions. These examples illustrate a possible
connection between the notion of legibility in multiagent navigation and the measure of Topological
Complexity. Here, following the discussion of Sec. 3.1.4, by legible, we refer to motion that clearly
conveys the robot’s intention over a passing side (i.e., right, or left). Qualitatively, from Fig. 5, we
see that executions of low topological complexity seem to be more legible; conversely, executions
with high topological complexity appear to be less legible. Thus, given the findings of Sec. 4, we
expect the behaviors generated by SM to be more legible to human observers.

To evaluate the validity of this expectation, we formally investigate the following hypothesisH1
by examining its constituent sub-hypotheses H1a and H1b:

H1: The Social Momentum (SM) framework generates multiagent navigation behaviors that human
observers perceive as legible.

• H1a: Social Momentum produces multiagent trajectories of comparatively low topological
complexity.
• H1b: Trajectories of low topological complexity are perceived as more legible by human observers.

Section 4.3.4 has already demonstrated empirically that SM generates executions of low topological
complexity compared to two other baselines. Thus,H1a is confirmed. To contextualize and validate
this finding, we separately investigated sub-hypothesis H1b by conducting an online user study in
which we asked human subjects to predict the evolution of simulated multiagent scenarios from
partial observation.

5.1 Study Design
We designed an online user interface for a simple game around predicting agent motion. The
interface played videos of simulated multiagent navigation scenarios and asked the user to predict
which side a specific pair of agents would pass each other on (right or left) by clicking on a button
corresponding to each side (see Fig. 8). The interface incentivized fast, accurate responses through
a scoring system that awarded points for accurate answers given early in the video (before the
agents passed each other) and deducted points for incorrect or slow responses. Users were shown
information about their performance relative to the median performance of previous users to further
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Score: 6 points

You answered in 1.818
seconds! That’s faster
than the median time!

ü Correct!

+2 points!

Fig. 8. Study interface: A video of a simulated scenario (large teal circle at top) plays and users predict how
the red agent will avoid the blue agent (passing on its left or right) by pressing the corresponding button
at the bottom. The user’s score and relative performance statistics are displayed to motivate fast, accurate
responses.

motivate healthy competition toward giving correct answers as quickly as possible. We employed
a within-subjects design in which all users were shown the same set of 15 videos, presented in
random order. Each video showed a distinct simulated multiagent scenario. All scenarios involved
agents travelling between antipodal points on a circular workspace, incentivizing agents to plan
nontrivial collision avoidance maneuvers. The scenarios were selected to span a broad range of
Topological Complexity index values [19], ranging from 1.585 to 4.250, and ranged in duration from
6.3 to 15.7 seconds.

5.2 Analysis
We recruited 180 unique users via open recruitment calls on the social media platforms Reddit
and Facebook without special selection criteria. Considering incomplete entries (entries in which
users did not watch all 15 videos), we recorded a total of 2704 video views. For each view, we
recorded a) the user’s prediction (right or left) and b) the time of that prediction (relative to the
start of the corresponding video). We removed responses which were given either before the
start of a video or after the end of a video from the data, resulting in a dataset of 2647 responses.
Fig. 9a describes the distribution of prediction times across all videos, itemized with respect to
correctness, for this dataset. The timing values are normalized to total video duration to allow for
timing comparison between videos of different length. Overall, only 300 out of 2647 responses were
incorrect, but we found that correct responses required significantly more time (paired Student’s
t-Test, t = 2.065,p = 0.039).

Fig. 9b demonstrates the effect of topological complexity on the time participants take to give a
correct answer. We fit a linear model to the data using iteratively reweighted least squares, shown
in Fig. 9b as a blue line with a 95% confidence interval. The effect of topological complexity on the
median time to correct answer is positive (slope 0.0236) and significant according to a Student’s
t-test (t = 5.60, p < 0.001). This finding suggests that as the topological complexity of an execution
increases, users take more time to accurately predict the side of passing. Per the definition of
legibility given in Sec. 3.1.3 and the original paper by Dragan and Srinivasa [17], legibility requires
human observers to be able to infer an agents’ intent (here, the agents’ passing side) quickly
and correctly. In this study, we see that correct predictions of the agents’ passing side require
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0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Time to response (percent of scenario length)

Correct Responses
Incorrect Responses
All Responses

(a) Distribution of response times. Solid vertical lines
indicate quartiles of response times; dashed lines
indicate mean response times.
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(b) Relation between topological complexity and the
median time to correct prediction (normalized to
scenario length).

Fig. 9. Distribution of response times (left) and relation between topological complexity and normalized time
to correct answer (right). We see a statistically significant positive correlation, indicating that scenarios with
greater topological complexity require more time to accurately predict.

more time(normalized to video length) for executions with higher topological complexity. Thus,
executions with high topological complexity are less legible, as they require more time to predict
correctly. This finding confirms sub-hypothesis H1b which, in conjunction with H1a confirm H1.
Overall, this confirmation suggests that within the multiagent navigation setting of this study,
navigation behaviors generated by Social Momentum are perceived as more legible compared to the
considered set of baselines.

6 EXPERIMENTAL EVALUATION OF MOTION PRODUCED BY SOCIAL MOMENTUM
IN THE PRESENCE OF HUMANS

We conducted a lab study to understand the effects of the embodiment of our proposed navigation
framework on human behavior and human perception. A video excerpt from our study can be
found at this link: https://youtu.be/8aO4P6_OzW4.

6.1 Study Design
The lab environment afforded us with the ability to control human-robot interactions across space
and time. In particular, we employed a design that enabled us to:
• Enforce a setting of implicit, nonverbal social engagement among agents, similar to the type
of interaction among walking pedestrians;
• Construct a moderately crowded scene that balanced close interactions with space for the
robot to showcase its distinct navigation strategies (see Fig. 10a);
• Promote the emergence of nontrivial interactions, involving challenging collision-avoidance
maneuvers between participants and the robot through the definition of rules;
• Motivate natural walking behaviors by not disclosing the real purpose of the study until the
debriefing process and by manipulating participants’ cognitive load through a background
scenario and task;
• Bound the total duration to facilitate recruiting and minimize potential effects resulting from
participants’ fatigue.
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(a) Footage from a study session.

1m

(b) Schematic of the workspace.

Fig. 10. Illustration of the experiments conducted at our study sessions. Fig. 10a shows footage from a
study session. The setup comprises a telepresence robot [1] and a set of six easels representing machines
in a fictional factory workspace. Three participants, wearing tracking helmets navigate between stations to
perform fictional maintenance tasks on the machines. Fig. 10b illustrates the experimental process: once a
sound signal is broadcast, the humans and the robot start moving between different machines (shown in blue
color). As they move, the perform collision-avoidance maneuvers.

6.1.1 General Procedure. Our study is organized into a set of experiment sessions. In each session,
three different human subjects participate in a set of three experiment trials. Before the first trial,
participants are asked to give written consent to confirm their participation and optionally to be
video recorded. A member of our research team delivers the instructions and answers questions.
During each trial, participants repeatedly visit a set of stations inside a rectangular workspace of
area 16m2 (see Fig. 10b), driven by a fictional scenario (see Sec. 6.1.2). In parallel, a mobile robot (a
Suitable Technologies Beam Pro, equipped with a quad core i7 processor laptop from 2017), shown
in Fig. 10a, also moves between the stations as part of the scenario. During each trial, we track
the human and robot trajectories using an overhead motion capture system of six high-accuracy
(< 1 mm), high-fidelity (frequency 180 Hz) cameras and record the experiment if participants gave
consent. Real-time tracking is enabled through the use of construction helmets (see Fig. 10a) with
reflective markers. After each trial, participants are asked to fill in a questionnaire, containing
questions about their impressions from their interactions with the robot. At the end, participants
are asked to provide basic demographic data and information regarding their prior experience with
user studies and robotics technology. Participants are then debriefed, compensated and dismissed.

6.1.2 Background Scenario and Task. Participants are asked to imagine that they are workers in
a factory (the factory setting helps justify the tracking helmets) where the robot is a supervisor.
The factory environment (lab workspace) contains six machines, represented as easels, spread
around the workspace, as shown in Fig. 10b. Each worker is given a distinctly colored marker and a
contrasting, distinctly colored set of sticky notes. The duty of a worker is to perform maintenance
tasks to machines and assign tasks for other workers to perform. Assigning a task is done by
drawing a square on the pad of an easel, whereas performing a task is done by posting a sticky note
inside a square drawn on an easel pad. Participants are asked to perform only tasks represented
with squares of color that matches the color of their sticky notes (see Fig. 10a).

6.1.3 Trial Description. Before the start of each trial, participants are randomly positioned next to
different machines and the robot is placed in the middle of the workspace, as shown in Fig. 10a.
A trial is organized into a set of maintenance cycles, initiated by a gong sound, played by the
robot. Each time the gong is played, participants are instructed to leave their machines towards
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a non-adjacent machine of their choosing that is not occupied by another participant. Each time
participants reach a new machine, they are instructed to perform up to one pre-assigned task (if
one exists) and assign a new task. At the same time, the robot is navigating in the workspace by
following the same rules of transitioning between stations, i.e. it only moves to a randomly picked,
non-adjacent machine when the gong sound is played (note that it is possible that the robot might
pick a machine occupied by a human). For synchronization purposes, the gong sound is played
when the robot is ready to move towards its next machine. Each trial lasts exactly three minutes,
during which an ambient factory sound track is played.

6.1.4 Conditions. All participants were exposed to the same three conditions (within-subjects
design), each corresponding to a different navigation strategy, executed by the robot. To account for
potential ordering effects (i.e., due to fatigue, frustration, learning), the condition order was method-
ically varied and approximately equally spread across all sessions. We compared the performance of
Social Momentum (SM) with Optimal Reciprocal Collision Avoidance (ORCA) [77] and teleoperation
(TE). These strategies were mainly selected due to the diversity of decision making principles
that they represent. SM represents an intention-aware motion planning paradigm, whereas ORCA
(called OR for brevity from now on) is designed to be efficient, and TE is designed to be easy for
an operator to use and to appear humanlike. Additional influences on our selection of navigation
strategies included: (1) the fact that OR constitutes a common benchmark and work of reference
for multiagent simulations (e.g. [14, 27, 43, 54]); (2) the existence of an open source, optimized C++
implementation of OR; (3) the widespread use of telepresence robot platforms through teleoperation
via their navigation interfaces. The complexity of a real-world pedestrian environment would
pose a significant challenge to any of these navigation planners. However, we believe that an
extensive and comparative evaluation of planners with distinct philosophies could provide us
with significant insights and experience for the design of the next generation of social navigation
planning algorithms.

6.1.5 Implementation of Teleoperation. The Teleoperation strategy (TE) was implemented through
the official navigation interface provided by themanufacturer [1], using the arrow keys on a standard
laptop keyboard. This interface contains two live streams of video, providing the teleoperator with
real-time video streams of a forward, wide-angle field of view (top) and a floor view (bottom).
Navigation commands may be issued via the laptop keyboard’s arrow keys or with a mouse.
Commands are demonstrated as projected future trajectories on the video streams, providing
visual feedback to the operator (but not to the study participants). The teleoperation condition was
executed by the same member of our research team across all sessions, from a remote location
(outside of the lab). The teleoperator had significant prior experience with the navigation interface.
Before collecting data for our final dataset, we completed a total of 7 rounds of pilot sessions under
different variants of the final study setup. Thus, by the time we officially started the study, the
teleoperator had reached a skill level that qualitatively appeared to be appropriate for the needs of
the condition. Although it is hard to precisely quantify the operator’s skill level, his experience
was on the order of several hours of operation prior to the start of the study, and thus we do not
believe that his performance evolved over the course of the study as a result of learning.

6.2 Hypotheses
Upon experimenting with the three navigation strategies considered (simulations conducted with
SM and OR, and personal teleoperated teleconference sessions with the Beam), we observed very
different patterns of decision making. We interpreted these patterns as the result of the different
design principles and objectives underlying the operation of each framework: OR was developed to
produce efficient, realistic simulations of virtual multiagent scenarios; SM was designed to generate
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legible robot motion in dynamic multiagent environments; TE was based on a navigation interface
[1], specifically designed to allow non-expert users to control a robot intuitively. To the best of our
knowledge, these strategies have never been tested against each other under challenging, multia-
gent, experimental settings. It was unclear how close interaction between the robot and different
human participants would affect the motion generated by the different strategies. Furthermore, it
was uncertain how humans would react to different behaviors exhibited by the robot and how this
interaction would affect overall performance for both humans and the robot. Using the dataset gener-
ated by our study, we explore these questions by examining the validity of the following hypotheses:

H2 - Robot Performance: In close interactions with humans:
• H2a: OR generates the most geometrically efficient paths. This is motivated by the docu-
mented efficiency of ORCA [77] compared to other baselines in multiagent simulation.
• H2b: SM generates high-acceleration paths. This is motivated by the tendency of SM to
produce suboptimal, exaggerated motion in an effort to convey intent over a passing side.
• H2c: TE generates the most energy-efficient paths. This is motivated by the superior long-
term planning capabilities of humans and by the robot teleoperation interface that enables
comfortable and efficient navigation.

H3 - Human performance: Humans navigating in close proximity with the robot:
• H3a: follow the lowest-acceleration paths when the robot runs SM. Our insight is that by
being legible, SM could enable humans to anticipate its motion more accurately. This would
mean that participants would have to adjust their speed levels fewer times, thus following
lower-acceleration paths.
• H3b: spend the least energy when the robot runs TE. Our insight is that a human-operated
robot could exhibit behaviors with anthropomorphic traits that could be observable by
participants. This could enable them to understand and trust the robot behaviors more than
the baselines, which we would expect to see reflected in the robot’s lower energy.
• H3c: spend the most energy when the robot runs OR. Our insight is that by striving for
efficiency, a robot running ORCA would end up expecting humans to spend more effort into
avoiding collisions with it.

H4 - Group performance: Global group (human and robot) behavior under SM:
results in trajectories of lower Topological Complexity than the other two conditions. This is
motivated by the finding of the online study suggesting that SM generates motion of lower
TC than its baselines.

6.3 Datasets
We conducted 35 experiment sessions, in which a total of 105 human subjects were exposed to
all three conditions. Subjects were recruited from a university population (Cornell University),
through a centralized, university-run subject-recruitment website as well as through fliers posted
across campus. The subjects (59 female, 45 male, 1 unidentified) were 21.45 years old on average
(SD = 3.19 years) with their age ranging from 18 to 33 years. About half of them (57) had prior
experience of user study participation and they rated their familiarity with robotics technology
with an average of 2.47 (SD = 1.27) on a 5-point Likert scale.

We collected a dataset comprising the trajectories of all 105 participants and the robot across
all trials. Focusing on dynamic interactions of close proximity, we split this raw dataset into two
datasets of trajectory segments: (a) a dataset comprising 1033 robot trajectory segments of close
interaction with humans (minimum distance d < 1m) and (b) a dataset comprising 1566 human
trajectory segments of close interaction with the robot (also, of minimum distance d < 1m). We also
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(a) Acceleration (b) Energy (c) Path Irregularity (d) Time

Fig. 11. Expected means and confidence intervals for robot trajectory acceleration (a), robot trajectory energy
(b), robot path irregularity (c), and robot time (d), averaged per trajectory segment. Quantities labeled with
different letters (A, B, C) come from significantly different distributions (Tukey’s HSD test, p < 0.05).

collected a dataset comprising the responses of all 105 participants to a questionnaire, containing
Likert-scale style questions, based on the instrument of Bartneck et al. [5] and short response
questions.

6.4 Trajectory Analysis
We analyze the trajectory dataset using a set of trajectory quality measures from relevant literature
[30, 43, 54], computed over fixed timestep intervals (100 timesteps, totaling 0.2 seconds). In particular,
we computed: (1) the average Acceleration per segment, a; (2) the average Energy per segment, E,
where energy is defined as the integral of the squared velocity of an agent throughout its trajectory;
(3) the minimum Distance between the robot and any humans per segment, d ; (4) Path Irregularity
per segment, PI , measuring the total amount of unnecessary rotation (angle between an agent’s
heading and direction to goal) that an agent exhibits per unit path length [30]; (5) Path Efficiency,
ℰ , defined as the ratio of the distance between the endpoints of a segment over the length of
the path that the agent actually followed; (6) time spent per unit path length over a segment,
τ ; (7) Topological Complexity, TC [19, 54], defined as the amount of entanglement among agents’
trajectories throughout a trial (the Braidlab software package [69] was used for these computations).

Table 2. Effect of Navigation Strategy on Robot Behavior

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

a 56.09 28.05 2 65.12 58.94 < 0.0001
E 0.7083 0.3541 2 1015 440.1 < 0.0001
ℰ 0.05796 0.02898 2 999.1 4.825 0.008213
PI 454.4 227.2 2 1012 355.3 < 0.0001
τ 116.5 58.27 2 1016 1056 < 0.0001

6.5 Effect of Navigation Strategy on Robot Behavior
We model the effect of condition (OR, SM, TE) on each one of the trajectory quality measures
considered. We use linear mixed-effects regression models, to account for both fixed effects resulting
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from the conditions but also for random effects resulting from the session and the trial (expected
means with confidence intervals are depicted in Fig. 11).
One-way ANOVA performed on the models demonstrates a significant effect of the condition

on all robot trajectory quality criteria at the p < 0.05 level (see table 2 for the test statistics and
Fig. 11 for the expected means and confidence intervals for all criteria) and thus, we find that
H2 is confirmed. More specifically, it can be observed that OR generates the smoothest motion
among all strategies (lowest acceleration, lowest path irregularity, lowest time), which confirms
H2a. This trend was expected as OR selects actions that minimize divergence from an agent’s
direction to goal and desired speed to ensure collision avoidance for a desired time window. This
results in a smoother speed profile than other conditions. SM on the other hand, prioritizes intent-
expressiveness by exaggerating its motion to indicate an intended passing-side intention; this results
in higher acceleration (due to rotation) and path irregularity, which confirms H2b. Finally, TE is
the most energy-efficient — which confirms H2c — but also the least time-efficient of all strategies.
These findings could mainly be attributed to the defensive driving style of the teleoperator and the
navigation through arrow keys.

6.6 Effect of Navigation Strategy on Human Behavior
Similarly to robot trajectory, we model the dependency of the human trajectory quality measures to
the condition with linear mixed-effects models, accounting also for random effects of session, trial
and helmet per trial. Fig. 12 depicts the expected means and confidence intervals for the human
trajectory quality measures, whereas table 3 contains statistics extracted upon performing ANOVA
on the models at the p < 0.05 significance level.

Table 3. Effect of Navigation Strategy on Human Behavior

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

a 1.415 0.7073 2 250.4 3.888 0.02173
d 0.1075 0.05377 2 231.5 0.5872 0.5567
E 0.112 0.05599 2 253.3 3.449 0.03326
ℰ 0.02977 0.01489 2 68.46 1.959 0.1488
PI 0.5394 0.2697 2 249.4 3.286 0.03904
τ 0.08277 0.04139 2 252.7 2.145 0.1192

Overall, we find that H3 is confirmed. In particular, we see that humans in close proximity
with the robot followed smoother trajectories, of lower acceleration and path irregularity when
exposed to SM than humans exposed to either OR or TE, which confirms H3a. This was in line
with our expectations: SM’s intention-aware navigation strategy adapts the robot’s behavior to
the preferences of humans, thus facilitating human inference and decision making. Further, it
was observed that humans spend the least energy when exposed to TE, which confirms H3b. We
attribute this finding to the perceived humanlike nature of the motion generated by a teleoperated
robot: the embodiment of human decision making on a robot platform features humanlike traits
that potentially enable a higher level of human comfort. Finally, humans spend the most energy
around OR, which confirms H3c. This could be perceived as an result of OR’s more predictable
motion (minimal divergence from desired direction). Higher predictability potentially results in
higher confidence for participants, which allows them to move faster and thus spend more energy.
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6.7 Effect of Navigation Strategy on Group Behavior
We compute the Topological Complexity (TC) of the complete motion of all agents (robot and
humans) throughout each trial. We model the effect of condition on the TC of the group trajectory
(the set of all agents’ trajectories) over a trial, using a linear mixed-effects model (accounting for
random effects of session, trial and helmet per trial). Overall, we find that H4 is rejected. ANOVA
performed on the model uncovered a significant variance among conditions (F (2, 67.71) = 8.075,p =
0.000716, see table 4, Fig. 12). While we see that the TC of SM is lower than the TC of OR, the
result is not statistically significant. Further, we see that the TC of trajectories generated by groups
exposed to TE was significantly lower than both SM and OR.

While the lab experiment resembles in many ways the experiment featured in the online study,
several variables introduce important differences. Importantly, the embodiment on a differentially
constrained robot results in robot motion that differs from the motion generated in the simulated
experiments. Further, the online study only compared SM against simulation baselines (ORCA, SF).
We see that SM still exhibits lower TC on average than OR, albeit not to a statistically significant
extent. The relation to a human-operated robot was a new baseline for which we had less clarity,
especially under the embodiment settings considered. Finally, this finding could be attributed
to the mechanisms underlying human navigation, as the decision making computations under
TE were done by the human teleoperator. Lower TC represents trajectory entanglement which
intuitively corresponds to behaviors of passing around as opposed to passing through others (see
Fig. 5). Thus, this trend could be attributed to the tendency of the human teleoperator to avoid
collisions more globally, by avoiding any type of encounter with other participants whereas the
robot was employing a more local collision avoidance mechanism by sequentially responding to any
challenging encounters. This finding is perhaps unsurprising since both autonomous algorithms
considered explicitly favor the avoidance of closer collisions over further ones.

Table 4. Effect of Navigation Strategy on Group Behavior

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

TC 107.3 53.66 2 67.71 8.075 0.000716

7 HUMAN PERCEPTIONS OF SOCIAL ROBOT NAVIGATION BEHAVIORS
In this section, we investigate how the social robot navigation frameworks considered in our lab
study shaped human perceptions. We focus on the dataset of human responses to the questionnaire
distributed after each condition. We first analyze the responses to a Likert-scale questionnaire,
which focused on participants’ impressions about the robot’s intelligence, social competence and
emotional impact. We then perform a thematic analysis on participants’ responses to an open-form
question that extracted qualitative feedback from participants.

7.1 Exploratory Factor Analysis: Effect of Navigation Strategy on Human Ratings
Table 5 contains descriptive statistics of the contributed ratings. The left column lists the adjective
pairs and questions shown to participants in 1-5 Likert-scale format, where 5 corresponds to a
positive answer. Ratings from 3 subjects were omitted as they were incomplete, resulting in an
effective dataset of 102 human subject ratings for each condition. The right column lists the means
and standard deviations of the ratings from all 102 subjects, computed over all 3 conditions.
In order to understand the ratings better, we perform an exploratory factor analysis to group

them into thematically consistent categories. Factor analysis expresses an observation X ∈ Rp ,
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(a) Acceleration (b) Energy (c) Path Irregularity (d) Top. Complexity

Fig. 12. Expected means and confidence intervals for human acceleration (a), human energy (b), and human
path irregularity (c), averaged per trajectory segment. Fig. 12d depicts the mean and confidence interval for
the topological complexity, averaged across trials considering both the humans and the robot. Pairs labeled
with different letters (e.g., A, B) are significantly different to each other (Tukey’s HSD test, p < 0.05).

Table 5. Ratings of Robot Behavior and Human State

Ratings posed as adjective pairs and sentences Mean SD

Incompetent Competent 3.16 1.02
Irresponsible Responsible 3.22 1.02
Unpredictable Predictable 2.64 1.11
Incompliant Compliant 3.14 0.95
Foolish Sensible 3.09 1.06
Unfriendly Friendly 3.13 1.02
Unsafe Safe 3.27 1.22
Unpleasant Pleasant 3.09 0.96
Rude Polite 3.02 0.92
Clumsy Coordinated 3.26 1.09
Unintelligent Intelligent 3.12 0.98
Untrustworthy Trustworthy 3.15 0.87
Socially unaware Socially aware 2.61 1.15
Indiscreet Discreet 2.67 1.10

Anxious Relaxed 3.28 1.13
Agitated Calm 3.39 1.11
Surprised Tranquil 3.17 0.99

The robot’s presence was not noticeable 2.04 1.11
I will be able to tell where the robot is going in the future 2.25 1.12
The robot will not bump into me in the future 2.97 1.24

where p is the number of observed variables, as a linear relationship

X = ΛF + E, (8)

where Λ is a matrix of factor loadings, F ∈ Rm is a factor space of sizem ≤ p, and E is a vector of
specific factors. The factor loadings in Λ represent correlations between observed variables X and
latent factors F .
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In our case, we had p = 20 questions, answered 306 times (3 times from each of the 102 subjects).
We verified the sampling adequacy by computing the Kaiser-Meyer-Olkin measure (KMO) for each
question independently (KMO > 0.74), and for all questions together (KMO = 0.89). We verified
that the observed variables were not pathologically correlated by examining the correlation matrix
R (Bartlett’s test, χ 2(190) = 2787.774, p < 0.001, det(R) > 0.00001). Following Kaiser’s criterion,
we decided to extractm = 5 principal factors corresponding to eigenvalues > 1. Based on these
5 factors, we were able to explain 53.3% of the total variance. Table 6 depicts the retrieved factor
matrix Λ, rotated by the Varimax method. The factors are ranked in order of decreasing variability
explained.
We interpret the factors by focusing on the questions with loadings greater than 0.5 in table 6.

Based on this assumption, we extract the following labels. In particular, we label: factor I as social
competence, since "friendly", safe", "pleasant" and "polite" scored high; factor V as intelligence,
since the "intelligent", "coordinated", "socially aware", "sensible" adjectives scored the highest; factor
II as human comfort, since the "relaxed", "calm", and "tranquil" adjectives scored highest; factor
III as predictability, since the "predictable" and "predict where the robot is going" scored highest.;
factor IV as discretion, since the "presence not noticeable" question scored highest.
Based on the extracted linear model of eq. (8), we can now compute the factor scores for each

observation following a standard regression method. We then model the effect of condition on
each of the extracted factors using a Linear Mixed Effects Regression Model. Table 7 contains the
statistics of one-way ANOVA tests performed for each factor. Overall, we observe no significant
variance across conditions for all factors.

Table 6. Factor Matrix (Varimax Rotated)

Rating Factor I Factor V Factor II Factor III Factor IV Communality

incompetent_competent 0.423 0.481 0.048 0.496 0.127 0.673
irresponsible_responsible 0.496 0.380 0.061 0.479 0.144 0.643
unpredictable_predictable 0.027 0.114 0.162 0.599 0.055 0.401
incompliant_compliant 0.413 0.304 0.098 0.413 0.135 0.461
foolish_sensible 0.426 0.529 0.016 0.284 0.074 0.547
unfriendly_friendly 0.698 0.133 0.253 -0.022 0.096 0.578
unsafe_safe 0.584 0.225 0.324 0.179 0.217 0.576
unpleasant_pleasant 0.664 0.284 0.260 0.043 0.159 0.615
clumsy_coordinated 0.216 0.549 0.125 0.170 0.200 0.432
unintelligent_intelligent 0.167 0.845 0.007 0.140 -0.083 0.767
untrustworthy_trustworthy 0.463 0.462 0.167 0.175 0.019 0.487
sociallyUnaware_aware 0.219 0.586 0.190 0.178 0.220 0.506
anxious_relaxed 0.229 0.020 0.771 0.149 0.093 0.677
agitated_calm 0.287 0.211 0.789 0.186 0.111 0.796
predict_where_future -0.078 0.148 0.190 0.602 -0.038 0.427
rude_polite 0.547 0.229 0.133 -0.076 0.161 0.401
indiscreet_discreet 0.216 0.022 0.088 0.119 0.464 0.284
surprised_tranquil 0.149 0.068 0.570 0.218 0.252 0.462
presence_not_noticeable 0.052 0.114 0.157 -0.051 0.735 0.582
wont_bump_future 0.231 0.335 0.271 0.052 0.327 0.348

SS loadings 2.947 2.729 2.060 1.721 1.215
Proportion Variance 0.147 0.136 0.103 0.086 0.060
Cumulative Variance 0.147 0.283 0.386 0.472 0.533
Proportion Explained 0.276 0.255 0.193 0.161 0.113
Cumulative Proportion 0.276 0.531 0.724 0.886 1.000
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Table 7. Effect of Strategy on Factor Scores (ANOVA)

Rating Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

Social competence 0.70078 0.35039 2 269.33 0.6025 0.5482
Intelligence 3.4518 1.7259 2 269.32 2.8332 0.06058
Human comfort 1.4287 0.71433 2 269.16 1.0388 0.3553
Predictability 0.083392 0.041696 2 270.57 0.0655 0.9367
Discretion 2.6502 1.3251 2 269.57 2.2132 0.1113

7.2 Thematic Analysis: Effect of Navigation Strategy on Short Responses
To gain a deeper understanding of the impressions, attitudes, and views of the participants over
the three conditions of robot navigation strategies employed in the lab study (ORCA, SM, TE; see
Section 6), participants were invited to answer one open-question after experiencing each condition:
“Please include anything else you would like to share about your experience.” This question was asked
to extract users’ insights that cannot be captured using traditional Likert-scale questionnaires [2].
In this section, we detail the thematic analysis conducted, the coding scheme used, the inter-

judges agreement, and the results from this qualitative analysis. This thematic analysis helped us
understand the participants’ experience during the study.

7.2.1 Inter-coder Agreement. Two independent coders were involved in the coding of the data.
First, each coder reads through the transcribed data independently and without attempting to make
a correspondence between the data and the conditions. At this stage, the two coders extracted
emerging themes from the data. Second, the coders discussed the themes they had identified and
established a preliminary coding scheme. With this initial coding scheme, the two coders coded
50% of the data. The inter-coder agreement for this 50% of data analysis ranged from .276 (minimal
agreement) to 1 (perfect agreement). Given the need to improve the coding, the coders discussed
all the disagreements and coded the remaining of the data. The inter-coder agreement for 100% of
the data showed a moderate to strong agreement, k = .739 to .807 [56].

7.2.2 Coding Scheme. Qualitative analysis of the data were performed with Nvivo version 12 [6].
From a total poll of 121 participant responses, we analysed 101 (SM = 33; ORCA = 31; TE = 38).
To provide focus to this qualitative analysis, we excluded 20 responses that were not related with
participants’ impression of the robot. The coding scheme used for the thematic analysis emerged
from preliminary analysis of the data and is composed of four main themes named “Navigation”,
“Robot Behavior”, “Appearance and Hardware”, and “Human Emotions”. The coding scheme is
visually represented in Fig. 13 and detailed in Table 8.

7.2.3 Results. We highlight some of the most relevant findings from our thematic analysis, adding
more depth as to how participants experience their interaction with the robot across the three study
conditions. Fig. 14 depicts a word cloud containing the most frequent words used by participants.

Navigation Intention and Proximity. There were common aspects between all study condi-
tions regarding how participants experienced the robot navigation which are related to the intention
of the robot and the proximity to the robot while navigating in the same space. Often, participants
were unclear about the purpose of the robot, “I had no idea what the robot was doing” (TE condition)
as the behavior of the robot was perceived as unpredictable to them, “It seemed like the robot would
adjust its speed but unpredictably which made me nervous” (OR condition).

Independently of the study conditions, there was an overall sense that the robot was too close to
the participants: “There were moments when the robot approached me so close that I felt uncomfortable.”
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Fig. 13. Coding scheme developed and used in the thematic analysis described in Section 7.2.

Table 8. Coding scheme used in the thematic analysis.

Navigation

Intention Unclear purpose of the robot Confusion about the robot’s purpose.
Unpredictable behavior Impossibility to anticipate the robot’s behavior.

Proximity
Collision Reference to an actual collision or a near-collision experience.
Too close The robot approached too close, yielding discomfort.
In the way The robot intersected the path.

Behavior of the robot

Agency
Trust The robot’s behavior promoted trust in it.
Aggressiveness The robot’s behavior was perceived as aggressive.
Socially aware The robot’s navigation motion was perceived to respect the norms of socially acceptable behavior.

Performance Fostering performance The robot’s behavior fostered the task performance.
Hindering performance The robot’s behavior hindered the task performance.

Presence
Blending in The robot’s behavior felt natural and fit well within the context.
Disconnected presence The robot’s behavior did not fit within the context of the task.
Uncomfortable presence The robot’s presence brought up feeling of discomfort.

Appearance and
hardware

Likeable appearance Positive expressions towards the robot’s physical appearance.
Dislikeable appearance Negative expressions towards the robot’s physical appearance.
Limited perception The robot is perceived to lack sensing abilities over the environment and the participants.

Human emotions Positive emotions The interaction with the robot resulted in positive emotions.
Negative emotions The interaction with the robot resulted in negative emotions.

(SM condition) or “I felt the robot was in my personal space” (OR condition). In the same line,
participants also felt the robot was interrupting their trajectories, “The robot gets in the way
occasionally, sometimes I turn around and its right behind me.” (OR condition). This resulted in some
collisions between the participants and the autonomous robot across study conditions, “I saw some
near collisions. I think the robot got in my way maybe once or twice.” (SM condition). Interestingly,
participants acknowledged the collision experience with the robot in a similar fashion compared to
collisions with other participants from the study, “The robot felt about as in the way as a human
colleague during most of the study.” (TE condition).

Although the navigation near the robot and the other participants elicited some near-collisions
and invasions of personal space, this may partially be due to the experiment design itself, which
attempted to emulate crowded navigation settings. Participants compared the study navigation
experience to walking in a crowed public space, “The robot did bump my shoe but it was very slight
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Fig. 14. Word cloud. This image shows the most frequent words used by the participants to describe their
experience interacting with the robot across the three study conditions.

and not very different from navigating around a crowd.” (TE condition). Participants acknowledged
that the robot was blending in during the study, “I barely noticed the robot when I was performing
the tasks. (SM condition), comparing the presence of the robot with the other human participants,
“I did not notice the robots movements much more than the movements of other people.” (OR condition).
These results capture similarities of the participants’ experience across the three study conditions.

Robot Performance and Human Emotions. The factory setting scenario enabled us to avoid
telling participants about the true purpose of our study in an effort to elicit more natural navigation
behaviors from them. The scenario involved participants performing maintenance tasks in a factory.
This led to considerations of performance which appeared frequently in their qualitative responses.
It is important to note that while participants referred to their performance, this study did not
focused on measuring the performance of the participants, but rather on their subjective feelings
of working closely with a robot, which we report below.
Some reported the robot hindering their performance, “The robot’s movements relatively came

in the way of my work.” (OR condition), “The robot hindered my performance.” (SM condition).
Interestingly, on the TE condition, participants reported feelings of fostered performance related to
robot navigation, “I was more focused on the task this time. It was interesting having it move around

ACM Trans. Hum.-Robot Interact., Vol. 37, No. 4, Article 111. Publication date: August 2020.



Social Momentum: A Framework for Socially Competent Robot Navigation 111:31

and feeling its presence watching/supervising us during the task” (TE condition). When interacting
with the robot in the TE condition, participants also reported a higher social awareness of the robot,
“The robot sensed my presence and stopped.” (TE condition) or, “I think it was interesting to see the
robot stop abruptly when another “worker” walked in front of it. I think sometimes it might be tough
to always have to worry about not bumping into the robot but it was nice to see that it at least had
some sense to stop.” (TE condition).
Although participants did not report feelings of fostering performance in the remaining con-

ditions, crucially, they associated positive feelings on the interaction with the robot, “The robot
seemed to be checking easels the were not currently occupied and staying away from people. This
made the robot seem like it was better at its job and safer because it didn’t try to get too close to
people. When transitioning the robot seemed to wait for the people to move so it was easy to walk
around.” (SM condition). Positive emotions towards the robot arose mostly associated with the
notion that the robot is socially aware, “Sometimes the robot would be blocking my field of view
of other machines, but it was pretty aware in the fact that it would stop before hitting into other
people.” (SM condition) or that it is not directly interfering with the task, “I did not feel as if the robot
was interfering with anything.” (OR condition). Participants also acknowledged that the novelty of
interacting with a robot influenced how they performed during the task, “The initial presence of
the robot was disconcerting, but as I focused on my own task, I stopped noticing it altogether.” (OR
condition). As the novelty wears off, participants can focus more on the task, “I think I got used to
the robot’s presence by now, and hence it was better. Even though this felt more time constrained, the
robot didn’t make me as agitated.” (SM condition).

8 DISCUSSION
This paper represents a holistic documentation of our research on the design and evaluation of the
Social Momentum planning framework. In this section, we offer a unifying summary and discussion
of our algorithmic design, empirical methods and findings.

8.1 Algorithmic Design
Our algorithmic design was inspired by research on the cognitive mechanisms underlying human
inference [4, 16, 80] and by studies on the mechanisms governing human navigation and social
interactions in public spaces [28, 31, 81]. It was further motivated by recent work in human-robot
interaction [17, 40], highlighting the value of implicit, nonverbal communication as an effective tool
for fluent and effective human-robot collaboration. Finally, it builds on recent studies showing the
value of leveraging the cooperative mechanisms of human navigation into the design of algorithmic
social robot navigation frameworks [43, 53, 73].
In contrast to the majority of the literature, which implicitly captures features of interaction

in multiagent navigation [14, 37, 43, 73], our framework leverages an explicit representation of
interaction based on the quantity of angular momentum. Our framework monitors the state
of consensus between the navigation strategy of the robot and the inferred strategies of other
humans, and contributes robot motion aiming at maximally communicating the robot’s intention
of complying with them while taking the robot closer to its destination. This is implemented via a
computationally efficient decision-making rule based on the objective of Social Momentum, which
offers model interpretability and compactness. Finally, our framework is unique in that it represents
one of the first efforts of generating legible motion in the presence of groups of multiple human
agents. Legibility is a property of robot motion that has been typically explored in single-human
/ single-robot interaction settings in structured domains [12, 17, 44] or in simulated scenarios in
multiagent navigation [49, 51, 53].
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Our algorithmic design is deliberately simplified. One could possibly achieve higher performance
by considering an MPC-like design involving e.g., a larger planning horizon, adding components
to the objective function, carefully crafting the action space or leveraging a data-driven human
motion prediction model. However, our intention was to produce a planning framework rather than
a specifically engineered solution. Despite its simplicity, our framework was capable of handling
the complex interactions arising in our lab experiments. This was achieved with minimal tuning.
We find this observation interesting on its own –one would expect that such a simplified design
cannot handle humans. But we did show that from the perspective of participants, SM did just as
well in terms of self-reported human perceptions and allowed participants to navigate at more
constant speed levels (H3a). We hope that the community can easily build on top of our framework
or extract concepts and ideas such as employing topological models of multiagent interaction.

8.2 Empirical Methods
Our work featured a comprehensive evaluation including a characterization of simulated algorithm
performance, and a collection of human perceptions to simulated and embodied robot motion.

Critically, while there has been much work in the space of social robot navigation in multiagent
human environments [14, 37, 43, 61, 73], our lab study is unique in that it — to the best of our
knowledge— is the first to combine the following important elements: 1) controlled experimental
settings; 2) crowded navigation settings; 3) challenging navigation encounters requiring nontrivial
collision-avoidance maneuvers; 4) natural walking-behaviors settings through the use of a scripted
scenario; 5) large-scale data collection (105 subjects; 315 minutes of interaction). These settings
enabled us to enforce a situation resembling real-world interactions in a controlled experimental
fashion (section 6.1). We hope that our lab study design could serve as a template for designing a
benchmark for evaluating social robot navigation algorithms.
Furthermore, our work establishes the value of topological tools and analysis for multiagent

navigation. First, the abstraction of angular momentum encodes a topological structure to the
decision-making process of the robot. Further, we proposed the use of Topological Complexity [19]
as a tool for the analysis of multiagent navigation behaviors. Our online user study showed evidence
that topological complexity affects human perceptions of multiagent interactions. In particular, we
established a correlation between high Topological Complexity and low Legibility of multiagent
interactions. We expect that Topological Complexity but also additional tools from topological data
analysis [20] may also prove very relevant to applications in multiagent navigation.

8.3 Insights on Legibility
Social Momentum was designed to generate robot motion intended to be perceived as legible by
humans. We showed that in multiagent navigation, high Legibility is correlated with low Topological
Complexity, and established that Social Momentum appears to be more legible compared to baselines
such as ORCA [77] and Social Force [32] according to the findings of our online user study. In
the lab study, this clear result does not directly transfer; group behaviors (including the robot and
humans) under the SM condition exhibit lower average topological complexity than ORCA but
the trend is not significant (see Fig. 12d). However, we observe that under TE, group behaviors
are significantly less topologically complex. Intuitively, low topological complexity corresponds to
multiagent-navigation behaviors featuring low mixing, in the sense described in Fig. 5. Thus, it
appears that in the presence of a human-teleoperated robot, the group of all agents engaged in
collision-avoidance encounters that were less direct, more coordinated and –under the correlation
between high Legibility and low Topological Complexity– also more legible. In other words, the
human-teleoperated robot exhibited behaviors that were more easily interpretable by humans (i.e.,
legible) than the behaviors generated by either ORCA or SM.
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We interpret this observation as an artifact in part of the uniquely collaborative character
of human navigation [81]: the human operator (the operator was already experienced with the
teleoperation setup and was held constant across all trials) would anticipate human reactions to
the robot motion and visibly diverge from a straight line path to convey collision avoidance avoid
others. This pattern is also reflected in the higher time per path segment that the robot followed
under TE (see Fig. 11d).

8.4 Insights on Comfort
It is generally challenging to measure the actual levels of comfort of participants throughout
the lab study. The novelty effect, the close interaction settings and the traits of the algorithms
considered have significantly affected human impressions as it can be seen in the Likert-scale
questionnaire analysis (Sec. 7.1) but also in the thematic analysis of participants’ short responses
(Sec. 7.2). However, looking at the trajectory dataset, we observe that human subjects navigating in
close proximity to the robot under SM follow low-acceleration paths (significantly lower than under
TE; lower than ORCA but not significantly so). This implies that humans switched between different
speeds less times when navigating next to the robot running SM, compared to the baselines. The
lower frequency of speed switching seems to indicate that humans avoided collisions with the
robot more easily under SM which we interpret as a proxy for higher comfort. While this is not
confirmed by human responses to the questionnaires, we believe that this might be because the
difference is not perceptible by human subjects.

8.5 Insights on Subjects’ Impressions
The analysis of human impressions that were collected via Likert-scale questionnaires did not reveal
significant differences across conditions. The thematic analysis on participants’ short responses
to open-form questions shared this trend but did provide a more nuanced, in-depth insight into
participants’ thoughts and emotions during close interaction with the robot.

Generally, participants described the feeling that the robot was approaching them too closely in
all study conditions. They also recognized that this level of proximity was similar to how they felt
with other participants involved in the study, and in they way they feel in crowded spaces. This
seems to show that our intention to mimic a crowded space in which a robot and humans need
to navigate close to each other was successfully accomplished in the study design. Additionally,
it showed that the level of proximity the participants felt between them and with the robot was
equivalent. This seems to show that although they would have enjoyed an additional level of
comfort by having more space between them and the robot, they understood this closeness was
part of the task itself and could be compared to real-world scenarios of crowded environments.

Participants also reported positive emotions from the interaction with the robot, which emerged
mostly associated with perceiving a higher social awareness of the robot towards them. It is
interesting that this was achieved despite the very limited fashion in which the robot perceived the
world around it: just human poses without any other visual/force sensing. Thus, it appears that
a robot with solely kinematic sensing may be perceived as being capable of generating socially
adequate behavior in crowded navigation settings.

8.6 Future Directions
One of our goals is to move our robot outside of the lab. We would like to conduct a field study
to investigate if the findings of the lab study transfer to real-world scenarios where humans and
robots navigate in crowded environments. Environments such as airports, shopping malls, and
crowded streets are of potential interest. This would require several systems upgrades including
on-board perception mechanisms and further tuning to adapt to the different context.
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Crucially, while conducting the research discussed in this article, it became apparent that the field
of social robot navigation lacks solid evaluation standards. To the best of our knowledge there are no
validated scales or measures specific to robot navigation in close proximity to humans. This makes
it hard to evaluate how well algorithms perform and how performance varies across environments
and interaction settings. Given the rich interest in this area over the recent years, we feel that the
development of a social robot navigation scale is a crucial missing element and an important line
of research. Relatedly, we observe a lack of benchmarks and concrete performance metrics that
would enable systematic testing. The introduction of such tools in conjunction with recent efforts
on the design of simulation environments [26, 75] will enable standardized benchmarking and a
smoother transition from simulation to real-world deployment.
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