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Abstract—It is diffcult to run long-term in-the-wild studies 
with mobile robots. This is partly because the robots we, as 
human-robot interaction (HRI) researchers, are interested in 
deploying prioritize expressivity over navigational capabilities, 
and making those robots autonomous is often not the focus of 
our research. One way to address these diffculties is with the 
Wizard of Oz (WoZ) methodology, where a researcher teleop-
erates the robot during its deployment. However, the constant 
attention required for teleoperation limits the duration of WoZ 
deployments, which in-turn reduces the amount of in-the-wild 
data we are able to collect. Our key insight is that several 
types of in-the-wild mobile robot studies can be run without 
autonomous navigation, using wandering instead. In this paper 
we present and share code for our wandering robot system, 
which enabled Kuri, an expressive robot with limited sensor 
and computational capabilities, to traverse the hallways of a 
28,000 ft2 foor for four days. Our system relies on informed 
direction selection to avoid obstacles and traverse the space, and 
periodic human help to charge. After presenting the outcomes 
from the four-day deployment, we then discuss the benefts of 
deploying a wandering robot, explore the types of in-the-wild 
studies that can be run with wandering robots, and share pointers 
for enabling other robots to wander. Our goal is to add wandering 
to the toolbox of navigation approaches HRI researchers use, 
particularly to run in-the-wild deployments with mobile robots. 

Index Terms—robot navigation, in-the-wild deployment, wan-
dering, Wizard of Oz, robots asking for help 

I. INTRODUCTION 

Over the last several years, the human-robot interaction 
(HRI) community has been moving towards in-the-wild stud-
ies. In-the-wild studies take place directly in “settings where 
people are and will increasingly engage with robots” and 
reveal insights about “how people will respond to robots in 
complex social settings and how robots will affect social 
dynamics in situ” [1]. In fact, in-the-wild studies have become 
so important to our community that the entire theme of HRI20 
was “Real World Human-Robot Interaction.” 

This work was (partially) funded by the NSF GRFP (DGE-1762114), the 
National Science Foundation IIS (#2007011), National Science Foundation 
DMS (#1839371), the Offce of Naval Research, US Army Research Labora-
tory CCDC, Amazon, and Honda Research Institute USA.
*Authors contributed equally. 

Fig. 1. Kuri in the halls of our academic building. Kuri is an expressive and 
engaging robot with low sensing and computation capabilities. Its lidar can 
only see up to 7.5 ft, insuffcient to localize in long, wide hallways. Further, 
a signifcant portion of its compute gets used by localization algorithms. 
Motivated by these limited capabilities, in this paper we describe a system for 
“wandering” that enabled Kuri to traverse our large hallways for four days. 

However, in-the-wild studies with mobile robots are diffcult 
to run. This is partly because our research community’s 
foci are often on interaction, so we are interested in de-
ploying robots that prioritize expressiveness and interactivity 
over navigational capabilities. For example, consider Mayfeld 
Robotics’ Kuri. Kuri has an engaging physical design and uses 
expressive animations composed of head movements, lights 
and vocalizations to portray emotions (e.g., happiness, sadness, 
sleepiness). However, Kuri’s lidar has a max range 7.5 ft 
(Fig. 1), which prevents it from localizing in wide hallways 
using range-based techniques. Further, its on-board computer 
has 1.5GB RAM, which makes it challenging to localize 
using vision-based techniques [2]. Kuri is one example of 
several interactive mobile robots (Sec. II-A) that have diffculty 
running off-the-shelf autonomous navigation algorithms. 

To account for the diffculty of running in-the-wild stud-
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ies with interactive mobile robots, the HRI community has 
relied on teleoperation—also referred to as Wizard of Oz 
(WoZ) [3]—to set robots in motion. This can be seen in the 
in-the-wild papers we publish; over the last 5 years, less than 
half of the mobile robot in-the-wild papers used autonomous 
robots, compared to over 90% for stationary robots1. How-
ever, teleoperating a robot requires constant attention, which 
limits the duration of in-the-wild deployments. These shorter 
deployments, in-turn, limit the types of insights and amount 
of data we can collect from them. 

In this paper, we present an alternative method for in-the-
wild deployments of mobile robots, that enables longer-term 
deployments without the constant attention required by WoZ. 
Specifcally, our key insight is that several types of in-the-
wild studies of mobile robots can be run without autonomous 
navigation, using wandering instead. To demonstrate this, we 
begin with the aforementioned Kuri, which is highly expres-
sive but cannot localize in the wide hallways of our 28,000 ft2 

foor. We then present and share the code3 for our wandering 
robot system, which enables Kuri to traverse the hallways 
over several days. This system relies on informed direction 
selection to avoid obstacles and navigate long hallways, and 
periodic human help via a chatbot to charge. This system 
uses known techniques—wandering robot behavior and human 
help—to achieve novel functionality—a multi-day deployment 
of a low-spec mobile robot in a large indoor environment. 

Our four-day deployment demonstrated that the robot was 
able to traverse the 1,200 ft of hallways in the building 
with little human help (around 0.5 hours over the 32 hour 
deployment). We conclude this paper with a discussion of the 
benefts of wandering robot deployments, the types of user 
studies that can use wandering robots, and how to develop 
wandering systems for other robot platforms. 

II. RELATED WORKS 

A. Interactive Robots 

The interactive robots in our community (e.g., Kismet [4], 
Keepon [5], Flobi [6], Geminoid [7], Leonardo [8], Cozmo, 
Furhat, Jibo, Kuri, Pepper) typically prioritize communicative 
expressivity through their industrial [9], [10] and interaction 
designs [11], [12] as well as in their engineering design (e.g., 
using more actuators in the face than body, using more sensors 
for recognizing human behaviors). While this prioritiziation 
of expressivity makes sense when one is trying to study and 
produce robots that engage with people, these designers and 
engineers are also limited by fnancial budgets (e.g., research 
grant limits, hardware cost targets) and technical budgets 
(e.g., power, compute, weight). As such, they make trade-
offs with regard to where to spend precious time, money, 
and effort. While it’s not impossible to develop robots that 

1Based on papers from the HRI conference and Transactions on Human-
Robot Interaction from 2017-2021 that included the keyword “in the wild” 
and had a robot deployment (source: ACM Digital Library). Of the 33 
papers found, 9 involved autonomous mobile robots, 11 involved teleoperated 
mobile robots, 13 involved autonomous stationary robots, and 1 involved a 
teleoperated stationary robot (1 involved both mobile and stationary robots). 

are capable in expressive behaviors, human interaction, and 
dynamic navigation (e.g., the design goals set by Nexi [13]), 
that is an exception, not the norm. Most interactive robots 
prioritize certain design goals (e.g., human interactivity) over 
other system design goals (e.g., robust navigation). 

In many cases, a robot’s expressiveness trades off against its 
navigation capabilities. Many interactive robots are not mobile 
at all (e.g., ElliQ, Furhat, Jibo, Keepon, Mabu), likely because 
their use cases do not require mobility. However, of the inter-
active mobile robots, some cannot navigate autonomously in 
spaces any larger than a table top (e.g., Cozmo avoid cliffs, but 
has no localization or navigation capabilities). Others struggle 
with localizing and navigating in large spaces, mostly because 
of short 3D sensor ranges and/or narrow sensor felds of view 
(e.g., Kuri localizes and navigates through home residences, 
but cannot localize in large offces or warehouses). Indeed, 
many “social robots” require additional sensors and compute 
in order to get them to localize and navigate. The NAO 
has an accessory lidar head unit for improving its navigation 
capabilities. Pepper also needs third-party lidar to navigate 
through large spaces [14]. It is these mobile, interactive robots 
that are the focus of the current work. 

B. In-The-Wild Studies 

In-the-wild studies have been used for many aspects of 
human-robot interaction, including: investigating human re-
actions to deployed robots [15]–[22]; designing and testing 
robots’ interaction, engagement, and learning techniques [17], 
[23]–[25]; and collecting datasets that can be used to develop 
algorithms that work in-the-wild [20], [26], [27]. However, as 
was mentioned above, several of the in-the-wild studies that in-
volve mobile robots use teleoperation to move the robot around 
(the Wizard of Oz methodology [3])1. For example, Taylor et 
al. [27] uses a teleoperated mobile robot to gather ego-centric 
data on human group movement around a robot, Fallatah et 
al. [15] used a teleoperated mobile robot to investigate human 
responses to a help-seeking robot, and Palinko et al. [28] uses 
a teleoperated mobile robot to investigate the impact of robot 
gaze on who interacted with it. However, relying on a wizard 
to teleoperate the robot throughout its deployment takes up 
valuable researcher time and attention, thereby limiting the 
duration of the deployment. 

A few notable examples of in-the-wild deployments that 
involve autonomous mobile robots include: CoBot, an offce 
service robot [29]; SPENCER, an airport guide robot [18]; 
Hobbit, an in-home assistive robot for older adults [19]; and 
Robovie, a shopping mall service robot [17]. These robots 
required considerable researcher effort to build, design, and 
maintain, which may not be feasible or practical, particularly 
for labs whose speciality is not full-stack robot development. 
We believe that the wandering robot system we present 
will enable researchers to more easily run longer in-the-
wild deployments of mobile robots, deepening our collective 
understanding of in-the-wild mobile robot interactions. 



C. Indoor Robot Navigation 

Most frequently, indoor robot navigation is divided into a 
localization problem, that estimates a position based on kine-
matic and sensor models as well as a map of the environment, 
and a planning and controls problem, that computes a path 
for the robot and velocity commands to follow that path [30]. 
Because some robots lack the sensors to precisely localize, 
or the computational power to run localization algorithms 
[31], [32], research has developed techniques for localization-
free coverage, or patrol. These approaches use only contact-
sensors, and have the robot move straight until hitting an 
obstacle, and then rotate [33]–[35]. Due to these techniques’ 
effcacy, low setup time, and minimal hardware cost, similar 
methods have been used in commercially successful robot 
vacuum cleaners for over a decade [36]. However, these 
methods are undesirable if the robot must avoid collisions. 

Recently, there have been several research efforts to move 
away from requiring range sensors to localize. One such 
direction involves using visual and inertial information to track 
the robot [37]. A visual tracking estimate of suffcient quality, 
coupled with an exploration method, can enable a robot to 
complete a coverage task [38]. Another such direction involves 
using learned visual representations of the environment to 
enable point-to-point navigation [39]. Recent work has shown 
that it is possible to create topological maps of environments, 
enabling robots to reach even far-away image goals by nav-
igating through a sequence of sub-goal images [40]. These 
methods hold promise for expanding the space of mobile 
robots that can effectively localize and navigate, particularly 
because they use relatively cheap sensors. However, they cur-
rently either require too much compute to run on-board some 
mobile robots, require a signifcant amount of preparatory 
work to train the models, and/or are not robust to in-the-wild 
challenges such as moving people or lighting changes. 

a) Wandering: The notion of a wandering robot has 
existed in the robotics community since at least the 1980s 
[41]. A well-known commercial instantiation of this concept 
is the early versions of the Roomba, a robot vacuum cleaner 
that covered a room by moving straight until it hit a wall, 
turning away from the wall, and continuing [36]. In these 
wandering robots, however, not needing human intervention 
was a design requirement [41]. However, particularly with the 
rise of notions of human help, or symbiotic autonomy [29], 
in the HRI community, we believe that integrating wandering 
behavior with periodic human help can increase the types of 
mobile robots we can use for in-the-wild deployments, and 
lengthen the duration of those deployments. 

D. Human Help 

Multiple works have suggested that robots use human help 
to overcome failures and to handle unexpected circumstances, 
a concept also known as symbiotic autonomy [29]. For ex-
ample, the CoBot project demonstrated that a robot could 
effectively navigate a multi-foor offce building over several 
years by relying on co-located humans to provide help like op-
erating the elevator, moving furniture, and completing tasks the 

robot could not (e.g., leaving notes on doors, retrieving food 
from fridges) [29], [42]. Other projects have demonstrated 
that robots with rudimentary navigation skills are able to 
successfully navigate outdoor spaces by either actively asking 
co-located humans for help [43] or by passively waiting for co-
located humans to help it [44]. Another work studied remote 
(not co-located) human helpers, and found that helpers had 
large individual variation in their responses to help requests 
and got annoyed if the robot asked too much [45]. Our work 
extends the concept of human help to wandering robots, and 
shares open-source code3 for enabling a robot to ask for help 
using commonly-used messaging applications. 

III. WANDERING ROBOT SYSTEM 

A. Robot: Kuri 

We developed our system atop the Mayfeld Kuri robot, a 
small, differential-drive social robot. Designed as a consumer 
product, Kuri is an expressive robot that can embody emotions 
like happiness, sadness and tiredness through eye movements, 
head movements, chest-light patterns, and beeps. However, as 
a product aimed at a $700 retail pricepoint, Kuri also has 
limited sensing and compute capabilities. It is equipped with 
a custom-designed low-power lidar sensor with a horizontal 
feld-of-view of 100°, a max range of 7.5 feet for walls, and a 
max range of 4.5 ft for human legs (Fig. 1). It can struggle to 
perceive dark surfaces until they are inches away. Kuri also has 
a monocular RGB camera, with a horizontal feld-of-view of 
87.5° and a vertical feld-of-view of 47°. Its computer is a low-
power Intel single-board computer (Intel(R) Atom(TM) x5-
Z8350 CPU @ 1.44GHz). Conventional workloads like run-
ning a localization particle flter or a vision-based localization 
technique can consume the majority of available compute. 

Although no longer commercially available, at least 48 uni-
versity labs possess Kuris2. Because Kuri was designed to be a 
relatively affordable consumer product that uses technologies 
that are 5+ years old, its capabilities likely represent a lower 
bound on those that we can expect in deployed mobile robots. 
In other words, researchers will likely use mobile robots at 
least as powerful as Kuri for deployments. Hence, we chose 
Kuri as a platform for our wandering robot system. 

B. System Requirements 

Our goal was to develop a mobile robot system that could 
• be deployed for several days, with only periodic human 

intervention. Unlike the Wizard of Oz paradigm [3], 
which typically involves a researcher teleoperating or 
providing instructions to the robot at all times, we wanted 
a human helper to be able to continue doing a full day 
of work while only periodically helping the robot. 

• effectively traverse the space it was deployed in. We 
wanted the robot’s position over its deployment to be 
distributed over the navigable spaces in the building, as 
opposed to being concentrated in a few places. 

2According to personal communication with a former Mayfeld Robotics 
employee 
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Fig. 2. Our system consists of a “wandering module” and a “human interaction module.” The wandering module’s consists of: an informed direction selection 
component that takes in the local costmap and the robot’s previous direction and selects the robot’s next direction; a local controller that takes in the selected 
direction and converts it to velocity commands; and a monitor loop that detects if the robot is stuck and attempts recovery behaviors. The human interaction 
module consists of a low battery anomaly detection loop that run on the robot and notifes the chatbot (running on a remote computer) when it detects a need 
for human help. The chatbot then notifes the helper(s). Together, these components enabled Kuri to wander the halls of our academic building for four days. 

• move at a reasonable speed. We did not want the robot to 
move so slowly that it would hinder walking traffc, nor 
so fast that it may be dangerous or scary to passersby. 

C. Domain 

The foor in the academic building that we targeted for 
deployment is around 28,000 ft2, with 1,200+ ft of hallways 
for the robot to navigate in. Hallways range from 6-10 ft 
wide and in many instances continue for 130 ft with minimal 
distinguishing geometry (see Fig. 4a). Several walls are made 
of glass (Fig. 4b), a material that cannot be detected by most 
lidar systems. Further, there is a black, chain-link bannister 
around many walkways that is also diffcult to detect using 
lidar (Fig. 4b). The perimeter of the banister is marked on 
the foor with a cliff, which can lead to robots getting stuck. 
These notable challenges aside, the space typifes common 
offce interiors into which one might deploy a mobile robot. 

D. Early Attempts 

We attempted to implement multiple conventional naviga-
tion approaches before developing our wandering system. 

1) Lidar-Based Localization: We attempted to use Kuri’s 
default navigation stack, developed by Mayfeld Robotics to 
enable Kuri to navigate in home interiors. However, due to 
the large hallways and diffcult-to-perceive materials, our de-
ployment setting differed from domestic environments enough 
that this solution was unusable. Kuri’s lidar could detect few 
surfaces—and none in some locations—which prevented it 
from building a map. We tried supplying a map created using 
a powerful lidar (manually edited to remove materials Kuri 
couldn’t perceive), but found that the sparse sensor readings 
were also insuffcient to perform Monte Carlo Localization 
against this map. Localization estimates diverged within 30ft, 
leading to unpredictable behavior. In practice, when using 
these lidar-based localization approaches, the robot often drove 
up to walls or diffcult-to-see banisters, and sometimes collided 
as it futilely attempted to “go around.” 

2) Vision-Based Localization: We then sought out and eval-
uated vision-based localization techniques [46], [47]. Based 
on Kuri’s monocular camera, and the need to close loops 

as it moved through the hallways, we frst considered ORB-
SLAM2 [2]. However, perhaps due to a combination of the 
camera’s limited feld-of-view, the robot’s weak on-board com-
puter, and our environment’s lack of distinguishing features in 
certain hallways, we found that Kuri had to move extremely 
slowly (< 0.1 m/s) to stay localized. We also found that pass-
ing humans could cause Kuri to get delocalized, and it would 
sometimes relocalize far from its previous estimate (despite not 
moving). This led us to techniques that perform fusion with 
other sensors that can track the robot’s motion [48]. We frst 
tried VINS-MONO, a technique that merges IMU data with 
a monocular camera to maintain a localization estimate [49]. 
However, this technique assumes a static link between the IMU 
and camera, which isn’t the case due to Kuri’s pan/tilt head. 
Further, because Kuri moves along the ground, its IMU is 
not as informative of a sensor. This led us to a technique 
that uses wheel encoders instead, and allows for a dynamic 
link between the camera and wheel encoders [50]. However, 
building the packages in the robot’s software distribution 
would have required large modifcations to the source for 
library compatibility, which led us to pursue other approaches. 

3) Adding Additional Sensors: Although we considered 
adding additional sensors to Kuri, we rejected it for three 
reasons. First, many candidate sensors would have strained 
Kuri’s battery, which lasts for three hours under minimally 
demanding workloads. Second, Kuri lacked space within its 
chassis to mount additional sensors internally, and external 
sensors would impact its expressivity. Third, we felt that 
mounting sensors would make our system less reproducible. 

4) Wandering Robot: Inspired by Brooks [41], we fnally 
settled on using a localization-free approach and developing 
a wandering robot. Based on earlier approaches, we charac-
terized a wandering robot as a system that iteratively selects 
a straight-line direction and follows it until an event triggers 
direction reselection. We therefore characterized the space of 
wandering systems in terms of two questions: what event 
triggers direction reselection, and how a new direction is 
selected. Brook’s [41] robot, for example, triggers direction 
reselection after 10 secs have elapsed, and selects directions 



Selected direction Motion trace

Fig. 3. How a robot with the same initial direction would move under different 
wandering behaviors. Top: Our frst attempt at wandering had the robot move 
up to 3m in a direction and then pick a different direction, which prevented the 
robot from traversing long halls. Bottom: Using informed direction selection, 
the robot is able to successfully traverse long halls. In practice, it is also able 
to stay further from obstacles than the frst attempt, because the robot rotates 
less and can therefore maintain a more accurate costmap. 

uniformly at random. The Roomba, on the other hand, triggers 
direction reselection when it collides with a wall, and selects 
a direction by approximately refecting off of the colliding 
surface [36]. With TweenBot [44], direction reselection is 
triggered when a human decides to rotate the robot, and what 
direction is selected is also up to the human. 

In our case, we did not want the robot to collide with 
obstacles, due to the aforementioned potential of getting stuck 
near bannisters in our environment. Therefore, we initially 
tried triggering direction reselection after the robot had moved 
3m, and selecting a direction by uniformly randomly sampling 
in [0, 2π). However, we found that this technique resulted in 
the robot moving back-and-forth across a few-meter distance 
(Fig. 3 Top). Even after lowering the sampling range to be 
maximally 90° from its current direction, after a few iterations 
of resampling the robot would turn almost 180° from its 
original heading. This repetitive motion lead the robot to get 
stuck in hallways and prevented it from traversing the building. 

E. System Implementation 

Our fnal system3 (Fig. 2) consists of a wandering module 
that is in charge of robot motion and a human interaction 
module that is in charge of communicating with the user(s). 

1) Wandering Module: The wandering module operates in 
two layers: informed direction selection and local control. 
The informed direction selection layer (Alg. 1) uses local 
context in the form of a costmap, as well as the robot’s 
previously selected direction, to pick the robot’s next direction. 
The costmap, M , is defned in the base frame with the robot 
at the center at a 0-rad angle. Both lidar and bump-sensor 
readings are used to populate the costmap to account for the 
fact that Kuri’s lidar alone may not pick up some obstacles. 
Given a costmap, the layer selects evenly spaced directions 
around its edge (generateDirections(η)). It then selects 
the direction that would encounter the least costly obstacles 

3https://github.com/hcrlab/kuri wandering robot 

Algorithm 1 Informed Direction Selection 
Input: Current local costmap M , 

number of directions to consider η, 
previously selected direction θprev 

Output: Next direction θnext 
1: dirs ← generateDirections(η) 
2: costs ← [(obsCost(θ, M) , |θ − θprev|) | θ ∈ dirs] 
3: i ← argmin(costs) {Using lexicographic ordering}
4: return dirs[i] 

(obsCost(θ, M)), breaking ties by favoring the direction 
closest to the previously selected one as assessed in the robot’s 
odometry frame. This ensures that Kuri avoids obstacles— 
lowering its chances of getting stuck—while navigating long 
hallways by moving in a similar direction (Fig. 3 Bottom). 
In practice, we found that a 3.5m2 costmap updating at 2Hz 
(buffering the 10Hz lidar readings) paired with η=24 worked 
well with the robot’s speed capped to .15m/s. 

The selected direction is then passed to a local control layer, 
which generates velocity commands for the robot to follow 
that direction. Any local controller can be used; we use ROS’s 
dwa_local_planner4. When the local controller can no 
longer generate velocity commands (e.g., due to the complete 
obstruction of that direction), the informed direction selection 
layer is engaged to reselect a direction. 

The robot monitors its progress in the odometry frame and 
engages recovery behaviors if it detects that it hasn’t moved 
a meter in thirty seconds. These behaviors are to: (a) clear 
the costmap and rotate in-place for eight seconds; (b) move 
backwards for ten seconds; and (c) alternately rotate left and 
right for ten seconds. In contrast with the other components 
of our system, these recovery behaviors were tailored to our 
deployment environment. Although simple, they effectively 
address failure modes we observed during testing, including 
getting stuck on furniture or trapped with a tread off of a cliff. 

2) Human Interaction Module: The human interaction 
module enables Kuri to use a chatbot to contact humans, either 
to help it or for domain-specifc interaction purposes. Specif-
cally, the robot requests help when it is low on battery, since 
it cannot return to its charger autonomously due to its lack 
of localization. As Kuri’s battery dips below set thresholds, it 
sends a message to designated “low battery helper(s)” (in our 
case, a researcher). This message tells recipients Kuri’s battery 
level, optionally includes a picture of Kuri’s surroundings, and 
asks them to put Kuri on its charger. 

Although our system only uses low battery help messages, 
chatbots in general can enable rich forms of communication 
through buttons, open-ended text responses, emoji reactions, 
and much more. To illustrate some of these interaction modal-
ities, our code includes a sample “where am I” help message 
where the robot shows users a picture of its current camera 
view, asks them to click a button corresponding to where it 
is, and/or asks them to type in its location using open-ended 

4http://wiki.ros.org/dwa local planner 
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text. Although the system does not autonomously decide when 
to request this type of help, and does not use it to localize, 
this sample message illustrates the potential for rich remote 
human-robot interactions via chatbots. We use Slack as the 
platform for this chatbot. 

A fnal component of our system includes researcher(s) peri-
odically monitoring Kuri’s camera feed to determine whether 
it is moving. Researchers do this infrequently—once every 
few hours—but it is important to catch the few situations 
where Kuri is unable to get unstuck using recovery behaviors. 
We did this by visualizing the robot’s camera stream in 
RVIZ5, although in principle this could also be done using 
a webstream or an extension to the interaction module where 
the user requests the robot’s current view. 

IV. FINDINGS FROM A MULTI-DAY DEPLOYMENT 

To understand and illustrate the potential value of a wan-
dering robot system, we ran a multi-day deployment in 
our large academic building (Sec. III-C). In addition to the 
aforementioned system requirements (Sec. III-B), another goal 
we had was for our system to be extensible to domain-
specifc scenarios. Therefore, we needed a domain-specifc 
scenario for this deployment. This was around the time that 
our department was trying to boost morale and create a 
sense of shared community, spurred by Covid-19 work-from-
home restrictions. Conversations around this departmental goal 
resulted in the idea of a robot photographer, designed to enable 
users to feel a sense of connection for a place by sharing 
images with them. In this section, we provide an overview of 
extensions we made to the system to adapt it to this domain-
specifc scenario, and an evaluation of the robot’s wandering 
behavior. Additional details and fndings from the deployment 
can be found in Appendix A and in our video6. 

A. Deployment Scenario: A Robot Photographer 

In our deployment scenario, Kuri wandered the hallways 
of our academic building and took pictures to share with 
remote users. These users were distinct from the designated 
helper who periodically helped the robot charge its battery, 
although both interacted with the robot using the same Slack 
workspace. Kuri’s goal was to take images of the building 
that it thought the remote users would like, share them with 
users, and get their feedback so it could improve its photo 
sharing. This deployment was approved by our university’s 
Institutional Review Board (IRB) and the building manager, 
and participants were recruited from the population of people 
who used this building and the associated Slack workspace. 

B. Extensions of the System 

For this deployment, we extended the wandering robot 
system with a photo-taking module and additional chatbot 
interactions. 

5http://wiki.ros.org/rviz 
6https://youtu.be/EsL9108-QYM 

1) Photo-Taking Module: We extended the wandering mod-
ule (Sec. III-E1) by enabling the robot to stop wandering when 
it wants to take a picture, and to execute precise orienting 
motions to fne-tune its image view. Specifcally, as the robot 
wanders, it analyzes its image stream to detect objects and 
determine which images users might like (more details on 
the robot’s model for human preferences can be found in 
Appendix A). When the robot detects images users might like, 
it stops its wandering motion. It then segments the image 
into a azquezregion of interest, using the approach in V´ 
and Steinfeld [51], rotates its head to center the region of 
interest, and then captures the picture. Note that although the 
extension to wandering behavior in this deployment is limited 
to starting and stopping wandering behavior for domain-
specifc purposes, in principle it can also be used to integrate 
wandering motions with other forms of motion (e.g., stop 
wandering when you see a person and move towards them). 

2) Chatbot Interaction Design: We extended the human 
interaction module (Sec. III-E2) by enabling the robot to 
to interact with more users beyond the designated helper(s). 
Specifcally, Kuri tells users it took an image for them, 
shares the image, and asks them to click a checkmark or x-
mark button based on whether they like the image (Fig. 4c). 
This user feedback is then sent back to the robot, to better 
learn the user’s preferences. To further engage the user, Kuri 
periodically asks an open-ended followup question, such as 
why they liked the image. More details about the interaction 
design can be found in Appendix A. 

C. Wandering Findings 

We deployed Kuri in our academic building for a period 
of four days in Summer 2021. In total, the robot ran for 32 
hours, where it traversed all of the 1,200+ ft of hallways of the 
foor (Fig. 4a). The robot never ran out of battery. Its system 
of notifying a helper (a member of the research team) when 
it was low on battery enabled it to get charged in a timely 
fashion the 12 times it needed to over the course of the study. 
The robot’s recovery behaviors enabled it to get unstuck most 
of the times it encountered environmental hazards; it needing 
manual rescue 4 times over the 4 days due to getting stuck 
on the cliff near the banisters (Sec. III-C). The helper noticed 
that the robot was stuck by periodically checking the robot’s 
camera feed and realizing that it was not moving. 

Overall, the system required around half an hour of the 
helper’s time over the course of its 32 hour deployment (16 
total instances of help, where most of those 30 minutes went 
towards the putting the robot on its charger). This is a tiny 
fraction of the researcher time that would have been required 
to teleoperate it under a WoZ design. 

V. DISCUSSION 

In this paper, we presented wandering robots as a way of 
enabling multi-day, in-the-wild deployments of mobile robots 
that might otherwise face challenges navigating autonomously. 
We shared the design and code3 for the system, which relies 
on informed direction selection and human help, and presented 

https://youtu.be/EsL9108-QYM
https://5http://wiki.ros.org/rviz
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Fig. 4. (a) Kuri’s movement around the foor plan of the building. Each dot represents a location Kuri was in when it took a picture, as annotated by 
researchers for a random 20% of the pictures it took. (b) Photos of Kuri as it wandered the environment. The environment contains materials that are 
diffcult to perceive with depth sensors, like glass, chrome-fnish metal, and black chain-link banisters. Large windows also varied the lighting, which impacts 
vision-based navigation approaches. (c) An example chatbot prompt from the deployment where the robot asked a user whether they like an image it took. 

(c) 

Autonomous WoZ Wandering 

Computation Substantial Minimal Some 
Connectivity Not required Required Not required 

Setup Substantial Minimal Some 
Supervision Minimal Substantial Some 
Robustness Variable Substantial Variable 

Goals Yes Yes No 

TABLE I 
SUMMARY OF THE TRADE-OFFS BETWEEN NAVIGATION APPROACHES FOR 

MOBILE ROBOT DEPLOYMENTS. 

outcomes from a four-day deployment in a large academic 
building. 

A. The Benefts of Wandering Robots 

Wandering robots have several benefts. First, wandering 
robots expand the space of robots that can be deployed in-
the-wild. Even robots with poor sensors and computational 
capacity can wander. Despite only being able to perceive 
obstacles up to 7.5 ft away, Kuri was able to successfully 
traverse the large foor by wandering (Sec. IV). 

Second, wandering mobile robots require less development 
and setup time. Probabilistic localization approaches typically 
require building a map of the environment, which takes time 
and familiarity with the foibles of map-building SLAM ap-
proaches. Learning-based navigation systems, which maintain 
implicit representations of the robot’s location, require the 
collection of in-situ training data to be effective, and are 
challenging to deploy on low-compute platforms. In contrast, 
our open-source implementation3 enables quick deployment of 
a robot like Kuri. 

Third, wandering robots can be suffciently autonomous 
for long-term deployments. Low-autonomy approaches like 
WoZ are generally valuable in HRI, although WoZ in-the-wild 
deployments require one or more researchers to constantly 

monitor or teleoperate the robot. In contrast, a wandering 
robot frees researchers’ time: through careful system design, 
teleoperation can be avoided and human help may only be 
needed a few times throughout the deployment. This makes it 
more feasible to deploy the robot for a longer period of time. 

Finally, when compared to stationary in-the-wild robots, 
wandering robots enable researchers to more deeply explore 
a domain because the robot will naturally interact with more 
people in varied contexts. Several in-the-wild studies have 
deployed stationary robots in particular indoor settings—a 
mall kiosk [21], in front of an elevator [20], at the entrance to 
a building [52]—and studied users’ reactions to them. Yet, we 
know that the way users interact with a robot depends heavily 
on the context [1]. Thus, being able to easily vary the context 
(locations, times, direction of motion, etc.) of interaction by 
wandering could deepen our perspectives on how users interact 
with a mobile robot in the building. 

Table I presents some of the tradeoffs between autonomous, 
Wizard of Oz, and wandering navigation approaches for mo-
bile robot deployments. Each approach has its strengths and 
shortcomings. Our goal is to add wandering to the space of 
navigational approaches considered by HRI researchers when 
running in-the-wild mobile robot deployments. 

B. User Studies Where Wandering Robots Can Be Used 

The notion of a wandering robot may seem counter to 
the goals of mobile robotics—a feld that has focused on 
domains like item pickup and delivery [29], [53], [54], guiding 
users [55]–[59], and taking inventory [60]–[62]. However, we 
contend that numerous in-the-wild human-robot interaction 
user studies can be run with a wandering robot. These include: 
• studies that investigate human reactions to an in-the-

wild mobile robot. For example, these can be exploratory 
studies or studies that investigate the impact of robot 
design on humans’ in-the-wild reactions. 



• studies that investigate a robot’s interactions with by-
standers. For example, these can involve investigating 
communication modes (e.g., natural language, expressive 
beeps, screens, etc.) or how to engage bystanders. 

• studies that investigate aspects of remote human-robot 
interaction. For example, these can investigate how robots 
share information with remote operators, how they can 
elicit feedback from remote humans, or how they can 
engage users through disembodied communication. 

Wandering robots also expand the types of robots that 
can be used for such studies to include robots with low 
sensor or computational capabilities. This lowers the cost and 
development barriers for deploying a system, enabling more 
researchers to run in-the-wild mobile robot studies. 

C. Generalizing to Other Robots 

One reason we developed this system on Kuri is because 
there are 72 Kuris at 48 different universities2, so this system 
can be used off-the-shelf by dozens of labs to run in-the-
wild deployments. However, because the HRI community uses 
a variety of robots, in this section we share pointers on 
developing a wandering system for other mobile robots. 

A crucial part of our wandering module is the costmap. 
Maintaining the costmap requires range sensors that can 
estimate the distance to nearby obstacles, and odometry ac-
curate enough that observations cohere as the robot moves. 
Importantly, neither capability need be excellent; Kuri’s lidar 
is limited compared to today’s alternatives, and the robot is 
not capable of dead reckoning for more than a meter before 
there is noticeable error. 

Some auxiliary sensors are useful, but are not be required to 
implement wandering. Bump sensors were valuable for Kuri, 
whose low-range lidar gave the robot a proclivity for close 
encounters with hard-to-see surfaces. Most robots which use 
modern, commercially available depth sensors or even low-
cost sonar arrays should have suffcient range to not need a 
bump sensor. We found that cliff sensors were unnecessary in 
our environment as fatal ledges, like stairwells, were behind 
doors. While not universal, this is true of many offce buildings 
due to fre protection measures for egress routes. 

Like extra sensors, recovery behaviors suited to the deploy-
ment environment aren’t necessary but increase the amount 
of time the robot can be expected to go without requiring 
assistance. While piloting our deployment, we quickly dis-
covered environmental hazards that would predictably ensnare 
the robot. Our procedure was to then attempt to recover with 

manual teleoperation, and if that was successful, to implement 
a matching scripted motion as a recovery behavior. 

The chatbot, by virtue of running on a remote machine and 
exposing a general-purpose HTTP interface, can work as-is for 
other robots. It can be readily extended to account for other 
types of help and forms of user interaction, as demonstrated by 
the sample “where am I” help message provided by our code. 
Our code is particular to Slack, but other major messaging 
platforms (e.g., Microsoft Teams, Discord, Matrix, Telegram, 
etc.) provide their own bot APIs, so our system can be adapted 
to whatever platform is used in a particular deployment. 

D. Limitations and Future Work 

There are multiple interesting directions for extending our 
system’s capabilities. Although our system only leverages 
human help when low on battery, it would be valuable to 
elicit human help in additional situations, such as when the 
robot is stuck. This could also enable investigations into how 
humans’ willingness to help a robot is impacted by the type of 
help requested. Further, our system is unable to perform goal-
directed motion, which can be required for some deployments 
or user studies. An interesting way to engineer goal-directed 
motion into this system would be to extend the human-
interaction module to enable helpers to localize the robot. 

Furthermore, we would be interested in extending the eval-
uation of our system. In this work, we tested our system on a 
Kuri. Several dozen labs also have a Kuri and could directly 
use our code. However, to further demonstrate the value of 
wandering robots in facilitating in-the-wild deployments, it 
would be valuable to test our system on additional platforms. 
This could involve collaborating directly with labs that use 
the system to understand their use case, gain insights into 
the challenges of extending the system to other robots and 
environments, and modify the system to make it easier to 
generalize. Finally, due to Covid-19 restrictions, our study 
did not involve in-person interactions (beyond the designated 
“helper”). We would be excited to run a long-term deployment 
study with a wandering robot while people are in the building. 
This would allow us to extract insights about co-located 
humans’ reactions to an expressive in-the-wild mobile robot. 
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APPENDIX A 
ROBOT PHOTOGRAPHER DEPLOYMENT DETAILS 

As was mentioned above, the primary goal of this de-
ployment was to test the robot’s wandering system and to 
provide a case-study in extending that system for domain-
specifc scenarios. However, the interactions that ensued be-
tween the robot and users in our domain-specifc scenario, 
a robot photographer, revealed initial insights that might be 
interesting to others in the HRI community. Hence, in this 
appendix we describe more details and initial insights from 
the deployment, particularly focused on the specifc robot 
photographer scenario. 

A. Recruitment 

Participants were recruited through email and Slack mes-
sages posted in communication channels that were likely to 
reach people affliated with our department. To be eligible, 
participants had to either have an offce in or have attended 
meetings/classes in the academic building the Kuri was de-
ployed in. 

B. Modeling Users’ Photo Preferences 

The robot modeled human photo preferences by estimating 
the humans’ preferences over objects they like to see in pic-
tures. Specifcally, the robot converted each image to a vector 
I , where Ii is the probability that object i is in the image (as 
outputted by Amazon Rekognition). The robot then assumes 
that user k has a corresponding preference vector θk, where 
θk,i indicates how much user k likes seeing object i in an 
image. The robot further assumes that the probability that user 
k reacts to the image with a checkmark is (1 + e(−θk · I))−1 . 
The robot begins with a Gaussian prior over every θk, seeded 
by pilot studies with building users, and updates its belief over 
a particular user’s θk using Laplace Approximation every time 
it gets a response from them. This focus on objects is because 
of the aforementioned goal of using the robot photographer 
to strengthen people’s feelings of connection to the building; 
therefore, the robot sought to understand which objects or 
views in the building users most liked. 

We integrate this model of photo preferences into a larger 2-
Arm Logistic Contextual Bandits formulation, where for each 
image it sees Kuri must decide whether or not to capture 
it for a particular user (i.e., the robot is solving a separate 
Contextual Bandits problem per user, where the arms are to 
“capture” or “not capture” the image). Kuri uses Laplace-TS, 
a Thompson Sampling based approach, to solve this problem. 
See Dumitrascu et al. [63] and Russo et al. [64] for details on 
Logistic Contextual Bandits and Laplace-TS. 

C. Interaction Design 

When sharing images with users, Kuri wrote that it took an 
image for them, and asked them to react based on whether 
or not they liked at least one object in the image. To further 
draw users’ attention to the objects in the image, the message 
also listed a few objects that Kuri detected in the image. See 
Fig. 4c for a sample interaction message. 

This interaction was developed over several pilot tests. One 
insight from the pilots was that care must be taken when 
selecting the emojis users use to respond to robot messages, 
due to multiple and possibly conficting prior connotations of 
emojis (for example, does “thumbs up” mean the person liked 
the image, or that they are acknowledging having seen the 
image?). Another insight was that periodic followup questions 
could help engage users and make the task feel less like a 
CAPTCHA-style labeling task. Hence, the robot sometimes 
asked open-ended followup questions, like “Can you explain 
more about why you (dis)liked this photo? Any objects that 
you (dis)liked?” These followup questions also helped us gain 
initial insights into the willingness for everyday users, who 
are not designated helpers, to help the robot improve. 

D. Deployment Procedure 

Although the deployment lasted 4 days (32 hours), users 
interacted with the robot in two 3-day batches. This was to 
avoid user fatigue and accommodate user’s schedules, while 
enabling the robot to reach a mature level of performance 
in terms of learning each users’ preferences. Each day, the 
robot engaged with the user 4 times (at 2 hour intervals), 
each time sending a batch of the 5 captured images that it 
felt the user would most like. Participants could respond to 
the pictures at anytime, by clicking either the checkmark or 
x-mark buttons. Users were told that they were participating 
in the “Seeing the World Through the Eyes of the Robot” 
project, where the robot’s goal was to learn the types of 
objects in the building that they likes and share pictures of 
those objects from the robot’s perspective. At the end of each 
day, user’s completed a survey that asked both quantitative 
questions (e.g., indicate (dis)agreement with statements like 
“I would interact with Kuri again in the future” or “Kuri 
learnt what types of objects I like to see in images”) and 
qualitative questions (e.g., “Did interacting with Kuri help 
you feel a sense of connection with the building Kuri was 
photographing?,” “In your interactions with Kuri, did you feel 
like you were interacting with something closer to a robot 
or a chatbot?,” etc.). Participants read and signed an informed 
consent form before participating, and were compensated with 
a $25 Amazon gift card after participating. 

E. Initial Insights 

During the deployment, the robot interacted with n=31 
remote users (10 female, 14 male, 1 prefer not to state, and 
6 who didn’t respond to that question). It sent them a total 
of 1,860 images (219 unique ones), out of which users liked 
1,002 (53.9%), disliked 736 (39.6%), and did not respond to 
122 (6.6%). All participants were sent all surveys and survey 
questions, but some chose not to respond. For the below 
analysis, we removed users who did not complete all surveys, 
for a total of n=22 users. 

User perception of the system was overall positive: 84% 
of users said they “would interact with Kuri more,” and (a 
different) 84% agreed with the statement “as I interacted 
with Kuri more, it shared images I liked more.” Below, 
we delve more into selected insights from users’ qualitative 



perceptions of the data. All qualitative responses were coded 
by a researcher, and responses where users did not answer the 
question were ignored. 

1) Connection to the Building: Users were asked two open-
ended questions about their connection to the building: “Did 
interacting with Kuri help you feel a sense of nostalgia 
for working in the building Kuri was photographing? Please 
explain why/why not” and “Did interacting with Kuri help 
you feel less like you were working from home? Please 
explain why/why not” We coded these responses as “positive,” 
“mixed”, and “negative.” In response to the nostalgia question, 
66% of users responded positively. For example, one user 
wrote “Yes, it reminded me of the labs where my friends 
worked from, places I used to walk around when in the 
building and a sense of nostalgia taking me back to the time I 
spent there.” 28% responded negatively, with one user writing 
“No; at some point the pictures felt repetitive and the images 
were not of areas that held particular signifcance to me.” 
However, the results were fipped on the working from home 
question, with 5% saying Kuri helped them feel like they 
were working from home less and 77% indicating that it did 
not. The negative responses often discussed how Slack was 
not suffcient to help them overcome the feeling of working 
from home, with one user saying ”No, it [Kuri] was pretty 
disconnected from my reality”. This indicates that remote 
robots can help users feel connected to spaces that they no 
longer work in, although that is not enough to overcome the 
feeling of working from home, which would be an exciting 
space to explore in future work. 

2) Chatbot vs Robot: To gain more insight into remote 
human-robot interaction, we also asked users if they felt Kuri 
was more like a robot or chatbot. The results were mixed: 10 
users felt that Kuri was more like a robot, 9 like a chatbot, 
and 2 mentioned aspects of both. Two themes arose in users’ 
responses—the presence of a physical body and the interaction 
style. In terms of physical body, one participant mentioned 
that Kuri had a physical body, which made it more like a 

robot. However, another participant mentioned that they had 
never experienced Kuri’s physical body, which made it more 
like a chatbot. In terms of interaction style, one participant 
wrote “It felt like interacting with a robot. The interaction 
was sparse and it did not feel spontaneous and real-time like 
a conversation with a chatbot.” However, another participant 
wrote “[Kuri was more like a] Chatbot, it had that strangely 
polite form of speech and all interactions were done over text.” 
This indicates that whether users focus more on the embodied 
or remote parts of the interaction depends heavily on their 
prior associations of chatbots and robots. User perceptions 
of systems that have embodied and remote components is an 
exciting area for future work. 

3) Emerging Patterns in User Responses to Followup Ques-
tions: Although the robot’s learning system did not use users’ 
responses to followup questions, users’ did not know that. De-
spite that, we noticed that some users volunteered information 
that would help the robot better learn their object preferences. 
For example, in response to the open-ended question of what 
objects they (dis)liked, one user wrote “I like the stairs and the 
geometric aspect,” while another wrote “I do not care about the 
fooring and the corridor is pretty ugly.” Further, multiple users 
began writing their response in the same comma-separated 
format that the robot used to describe objects in the picture. 
For example, one user wrote that they liked the “Skylight, 
architecture, window.” This indicates that users might be 
searching for ways to make their open-ended responses more 
useful to the robot, and given our interaction design they 
settled on a comma-separated format. This tendency to search 
for ways to help the robot was elaborated on by one user in 
the survey, who wrote “I appreciated being able to give more 
detail about what I liked/disliked in the images but I wasn’t 
certain how to phrase my feedback in a way that would be 
useful.” This indicates that open-ended responses might hold 
promise for enabling robots to get help and improve learning, 
although future work is required to systematically study the 
implications of and learning potential for open-ended followup 
questions. 
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