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Abstract— We focus on robot navigation in crowded environ-
ments. To navigate safely and efficiently within crowds, robots
need models for crowd motion prediction. Building such models
is hard due to the high dimensionality of multiagent domains
and the challenge of collecting or simulating interaction-rich
crowd-robot demonstrations. While there has been important
progress on models for offline pedestrian motion forecasting,
transferring their performance on real robots is nontrivial due
to close interaction settings and novelty effects on users. In
this paper, we investigate the utility of a recent state-of-the-art
motion prediction model (S-GAN) for crowd navigation tasks.
We incorporate this model into a model predictive controller
(MPC) and deploy it on a self-balancing robot which we subject
to a diverse range of crowd behaviors in the lab. We demonstrate
that while S-GAN motion prediction accuracy transfers to the
real world, its value is not reflected on navigation performance,
measured with respect to safety and efficiency; in fact, the MPC
performs indistinguishably even when using a simple constant-
velocity prediction model, suggesting that substantial model
improvements might be needed to yield significant gains for
crowd navigation tasks. Footage from our experiments can be
found at https://youtu.be/mzFiXg8KsZ0.

I. INTRODUCTION

Large-scale deep learning methods [5, 9, 14, 28, 32, 34, 45]
have dramatically improved the state-of-the-art in prediction
accuracy across standard benchmarks [20, 29]. While these
models have been the foundational in recent real-world robot
demonstrations [4, 6, 7, 10, 16, 22], scaling their performance
to complex environments like pedestrian domains, warehouses,
or hospitals is challenging as these environments feature close
interaction settings, large space of behavior, and limited rules.

To address these challenges, many approaches involve
training deep-learning models on simulated crowd-robot inter-
actions [6, 7, 10, 22]. While typical crowd simulators [15, 40]
produce realistic behaviors, some of their core assumptions
limit their relevance to crowd-navigation tasks. For instance,
Fraichard and Levesy [12] showed that the assumptions of
omniscience and homogeneity of existing crowd simulators
give rise to behaviors that would be unsafe to execute on
a real robot. Further, Mavrogiannis et al. [26] showed that
a non-reactive, non-collision-avoiding agent is safer than
ORCA-simulated agents in an ORCA-simulated world [40]
due to the overly submissive behaviors this model may exhibit.
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Fig. 1: Honda’s experimental ballbot [17] navigates next to
three users in our lab. Agents’ past trajectories and distribution
of future actions are shown. In this paper, we approach the
question of how human motion prediction accuracy translates
into robot navigation performance in crowded environments.

Other approaches use pedestrian datasets to train and vali-
date models for crowd motion prediction [23, 37]. However,
the pedestrian datasets most commonly used [20, 29] feature
well-structured, goal-directed, and cooperative motion. These
settings represent a very narrow subset of the behavior that
a robot would encounter in the real world. This behavior
is so prevalent in those datasets that according to Schöller
et al. [36], even constant-velocity (CV) prediction, a very
simple, analytical model, performs comparably to recent state-
of-the-art (SOTA) deep models. Therefore, while the SOTA
in human motion prediction keeps improving, it is unclear
what its relevance is for robot navigation in crowds.

Inspired by these observations, we ask the question:

To what extent does crowd motion prediction
accuracy translate to robot navigation performance
in crowd navigation tasks?

To approach this question, we investigate the transfer of
a recent SOTA model (S-GAN [14]) from offline datasets
to onboard performance and its implications on navigation
performance. We integrate the S-GAN as a dynamics model
into a standard MPC architecture and deploy it on a self-
balancing robot, which we subject to a series of diverse
crowd-robot interactions in the lab. Overall, we use a general
framework for control in social navigation to evaluate the
trajectory prediction models in crowds. We find that while the
onboard prediction accuracy of S-GAN is superior to a simple
CV baseline, the MPC navigation performance (measured
in terms of safety and time efficiency) is indistinguishable,
suggesting that substantial prediction model improvements
may be needed to achieve improved navigation performance.



II. RELATED WORK

We discuss related work from the human motion prediction
and crowd navigation literature.

A. Crowd Motion Prediction

The goal of modeling interactions among crowds in
pedestrian domains has motivated much recent work in
human motion prediction [32]. Recent works have used a
variety of architectures including recurrent [1, 8, 45, 46]
and convolutional [27] neural networks, spatiotemporal
graphs [21, 31, 34], state-refinement modules [35], explicit
probability maps [23], normalizing flows [2], and Gaussian
processes [37, 38]. Some state-of-the-art methods based
on generative adversarial networks (GAN) [14, 33] are
particularly applicable to motion prediction due to their ability
to model multimodality and diversity in crowd navigation.

Inspired by the effectiveness of GAN-based approaches,
we build our crowd motion prediction architecture around
S-GANs [14]. While prior work has used S-GANs primarily
for motion tracking on offline datasets [14] and simulated
environments [42], in this work we deploy a S-GAN-based
architecture on a real robot navigating under a variety of
crowd conditions. Our implementation enables real-time
performance capable of handling dynamic environments.

B. Crowd Navigation

In recent years, several crowd navigation algorithms
have been deployed on real robots [26]. Some approaches
incorporate explicit models of human motion prediction into
receding-horizon reactive controllers [4, 7, 18, 19, 25, 35, 37,
38, 42, 47]. Others learn end-to-end navigation policies using
techniques like deep reinforcement learning [6, 7, 10, 22].

Our approach falls into the former category: similar to
several recent works [4, 25, 42], we integrate a crowd motion
prediction model into a MPC architecture. In our prior work,
we showed that CV-based motion prediction can empower
a MPC to outperform recent end-to-end approaches [25]. In
this work, we explore the utility of the recent state-of-the-art
architectures like S-GANs for crowd navigation tasks.

C. Benchmarking in Crowd Navigation

A challenge in crowd navigation research is benchmarking
and validation [26]. Observing limitations of widely adopted
practices reported in recent literature [12, 26, 36], some works
have developed new simulation environments [3, 13, 39], real-
world datasets [43], and experimental protocols [24, 25, 30]
to improve the validation of future frameworks.

In this work, we also contribute towards these efforts by
developing a series of benchmarking experiments designed
to subject a navigation system to diverse crowd conditions.
Unlike prior work, which typically focuses on navigation
under cooperative, goal-directed settings, in this paper, we also
develop benchmarking scenarios in non-cooperative settings,
where humans are aggressive or distracted during navigation.

III. PROBLEM STATEMENT

We consider a workspace W ⊆ R2 where a robot navigates
among n human agents. We denote by s ∈ W the robot state
and by si ∈ W the agent state i ∈ N = {1, . . . n}. The robot
is navigating from a state s0 towards a goal state g whereas
agent i ∈ N = {1, . . . n} is navigating from si0 towards a
destination gi. The robot is unaware of gi but we assume
that it is fully observing the world state (st, s

1:n
t ) at every

timestep t. Maintaining a history of states for all agents, the
robot predicts their future trajectories using a model f . In
this paper, our goal is to investigate whether the prediction
accuracy of f translates to robot navigation performance.
As a proxy for navigation performance, we consider metrics
capturing safety and efficiency of robot motion.

IV. HUMAN MOTION PREDICTION

We treat human motion prediction as trajectory prediction
over a horizon T given a past trajectory of horizon h.

A. Probabilistic Modeling

We denote by sit−h:t ∈ Wh the partial trajectory of an
agent i ∈ N of horizon h and by sit:t+T ∈ WT the future
trajectory until time T . Consider a joint state prediction model
f : Wn×h −→ Wn×T , which takes as input the joint states of
the agents s1:nt−h:t and predicts the future states ŝ1:n.

f
(
s1t−h:t, . . . s

n
t−h:t

)
= (ŝ1t:t+T , . . . ŝ

n
t:t+T ) = ŝ1:n

We denote the distribution of future states for an agent
i ∈ N as p(ŝit:t+T ), and the joint distribution of states is
represented as p(ŝ1:n). The prediction model f : Wt×n ×
WT×n −→ [0, 1] is a conditional distribution; denoting the
distribution of the future trajectories given past trajectories
of all the agents i.e f corresponds to p(ŝ1:n|s1:nt−h:t).

B. Probabilistic Trajectory Prediction using S-GAN

In this paper, we adopt a probabilistic trajectory prediction
mechanism f using Social GAN (S-GAN), a state-of-the-art
model from Gupta et al. [14]. A GAN consists of two neural
networks: a generator G that estimates the data distribution
and a discriminator D that classifies examples as real or fake
(generated by G). D and G are trained via a min-max game:

min
G

max
D

V (G,D) =

Ex∼pdata (x)[logD(x)] + Ez∼p(z)
[log(1−D(G(z)))]

(1)

Given training data distribution p, and latent variable z ∼
N (0, 1), G takes input z and outputs a sample in the training
distribution i.e. G(z) ∼ p. This formulation can be extended
to conditional distributions such that given condition c and
z ∼ N (0, 1) as input to G, the output is G(z, c) ∼ p(·|c).

S-GAN [14] is conditioned on the past states of all the
agents, s1:nt−h:t. The generator G comprises an Encoder: a
recurrent network that takes as input sit−h:t, i ∈ N and
generates latent representations, a Pooling module: which
uses these representations and agents’ relative positions, and
generates a pooled representation incorporating multiagent



Fig. 2: Error in trajectory prediction of humans on the ETH [29] and UCY [20] datasets. Baselines are referred to from [36].
Error bars indicate 95% confidence intervals, and the line represents the minimum displacement error across the samples.

interaction, a Decoder: a recurrent network which takes
a latent variable z, the latent and pooled representations
and generates a sample from the future state distribution
p(ŝit:t+T )∀i ∈ N. Using G and z ∼ N (0, 1), given the
past states of all humans s1:nt−h:t we generate samples for
the future states ŝ1:n by approximating the distribution
f(s1:nt−h:t) = G(s1:nt−h:t, z) ∼ p(ŝ1:n|s1:nt−h:t). In order to model
the distribution of trajectories and diversity in samples from
the generator, S-GAN adds an auxiliary variety loss [11, 14].

C. Offline Prediction Performance

Schöller et al. [36] compared the Average Displacement Er-
ror (ADE) and the Final Displacement Error (FDE) of S-GAN-
based prediction against CV prediction and CV prediction
with added noise (CVN), showing that the latter ones perform
comparably across the scenes in the ETH [29] and UCY [20]
datasets. In Fig. 2, we compare their multistep prediction
performance (i.e., the L2-norm between the predicted position
and ground truth at each timestep of prediction), which is
informative for navigation tasks.

Similarly to the observations of Schöller et al. [36], we see
that S-GAN’s performance is mixed. While it exhibits lower
error on Zara1, it ties with CVN and CV on ETH-Uni and
Zara2 and it is outperformed by them in Hotel, whereas on
UCY-Uni all models perform comparably. It should be noted
that the human behavior featured in these datasets mostly
consists of linear segments that can be well approximated
by CV/CVN whereas the S-GAN models promise a better
generalization to more complex, nonlinear behavior.

V. MPC WITH PROBABILISTIC MULTIAGENT TRAJECTORY
PREDICTION

We integrate prediction models from Sec. IV into an MPC
for crowd navigation.

A. MPC for Navigation in Crowds

We employ a discrete MPC formulation for navigation in
a multiagent environment:

u∗ = arg min
u∈U

J (s, ŝ, ŝ1:n)

s.t. st+1 = g(st, ut)

(ŝ, ŝ1:n) = f(s1:nt−h:t, st−h:t), i ∈ N

, (2)

where: s = (s1, . . . , sT ) is a state rollout, acquired by passing
a control trajectory u = (u0, . . . , uT−1) drawn from a space
of controls U through the dynamics g; ŝi = (ŝi1, . . . , ŝ

i
T ) is

a trajectory prediction for agent i, extracted using f , which
takes as input a state history of h timesteps in the past for all
the agents, and ŝ1:n = (ŝ1, . . . , ŝn); J is a cost expressing
considerations of safety, efficiency, and human comfort. We
use the trajectory predictions ŝ1:n to evaluate the control
trajectory u. The accuracy of the cost J depends on the
model f performance, so, using better prediction models
gives more accurate estimates of human safety, and efficiency
for robot actions, overall improving the cost function and
control.

B. MPC with Probabilistic Prediction

We use the model from Sec. IV-B, to jointly estimate the
future states of all agents (including the robot) conditioned
on their state histories. We integrate this model of into the
MPC framework through the following composite cost:

J exp(s, ŝ1:n) = agJg(s)+

E
[
adJd(s, ŝ

1:n)+apJp(s, ŝ
1:n) + acJc(s, ŝ

1:n)
],

(3)

where: the expectation is taken over the distribution
(ŝ, ŝ1:n) ∼ p(ŝ, ŝ1:n|st−h:t, s

1:n
t−h:t); the functions Jg, Jd

account respectively for progress to goal, respect of users’
personal space (see our prior work [25] for detailed defini-
tions), and prediction consistency; ad, ap, ac are weights.

Prediction inconsistency cost. Minimizing the cost:

Jc(s, ŝ) = E [∥s− ŝ∥], (4)

matches in expectation the model prediction about the robot
motion, ŝ, given its past interactions with the crowd. Since
the prediction model is trained to jointly predict multiagent
interactions, by staying close to predictions about its own
motion, the robot can be more confident about the consistency
of its predictions about users’ motion. In practice, this
motivates the robot to avoid maneuvers that could surprise
users, forcing them to unexpected reactions that would also
be hard to predict using the model.

Overall, the expected cost J exp enables the controller
to probabilistically reason about the quality of candidate
trajectories, incorporating a notion of uncertainty over the
future human behavior given the robot’s intended behavior.



(a) (b)

Fig. 3: Simulation results. (a) Human motion prediction
error over time. (b) Safety vs Time to goal. Lines represent
minimum displacement errors across the samples and error
bands indicate 95% confidence intervals.

C. Simulated Experiments

As a first step towards understanding the impact of pre-
diction accuracy on navigation performance, we instantiated
Honda’s experimental ballbot [17, 25, 44] (see Fig. 1) in a
simulated Gazebo world where human agents were controlled
using the ORCA [40] model. We considered a setting in which
three human agents and the robot move across the diagonals
of a 3.6 × 4.5m2 workspace (see Table II, top left). We
evaluated navigation performance in terms of Safety, defined
as the minimum distance between the robot and human agents
(minus the assumed radii of the robot and human agents, both
set to 0.3m) throughout a trial, and Time to goal, defined as
the time taken by the robot to reach its goal.

Algorithms. We instantiated four different MPC variants,
each using a different mechanism for motion prediction:

MPC with CV prediction: This baseline approximates the
transition function f as a CV model, i.e., sit+1 = sit + vit · dt
for agent i, where dt represents a timestep; this approximation
ignores possible reactions to the motion of other agents.

MPC with CVN prediction: This baseline from Schöller
et al. [36] generates noisy samples from a CV model.

MPC with S-GAN-1 prediction: This baseline uses a single-
sample estimate extracted from the S-GAN [14] model. We
used the best performing model trained on the ETH dataset.

MPC with S-GAN-20 prediction: This baseline uses a 20-
sample estimate extracted from the same S-GAN model.

Implementation. We follow an MPC implementation
similar to Brito et al. [4], using a set U of robot control
trajectories extracted by propagating the robot with constant
velocity towards 10 subgoals, placed around the robot at
fixed orientation intervals of π

5 and distance of 10m. The
robot control trajectories and the human motion prediction are
generated for 6 timesteps of size 0.2s. This parametrization
enabled timely response to the dynamic environment: our
control loop closed with a frequency of 10Hz. We tuned all
MPC variants through parameter sweeps balancing Safety and
Time. The code for our implementation on a 2d-planar robot
can be found at https://github.com/sriyash421/Pred2Nav.

Results. Fig. 3a depicts multistep displacement errors
across models. We see that the error of S-GAN models is
consistently higher than CV/CVN. We suspect that this is be-
cause the behavior of ORCA agents often comprises perfectly
linear segments which can be effectively approximated using

TABLE I: Average (ADE) and final (FDE) displacement error
(m) across real-world experiments.

Cooperative Aggressive Distracted

Prediction Model ADE FDE ADE FDE ADE FDE

S-GAN-20 0.257 0.388 0.276 0.423 0.345 0.531
S-GAN-1 0.357 0.575 0.393 0.637 0.504 0.827

CV 0.389 0.644 0.334 0.539 0.462 0.753

CV-based models; in contrast, the S-GAN models, trained
on real-world datasets are less accurate on ORCA agents.
However, we see that the superiority of the CV prediction
does not translate to superiority in navigation: a scatter plot
for safety vs. time to goal for all trials (Fig. 3b) does not
show a clear winner, similarly to conducted pairwise U-tests.

VI. REAL-WORLD EXPERIMENTS

As discussed in Sec. I, benchmarking in a simulated
environment –while a widely adopted practice in crowd
navigation research– comes with limitations [12, 26]. In this
section, we investigate the relationship between prediction
and navigation under realistic settings in the lab.

A. Experimental Setup

We used Honda’s experimental ballbot [17, 25, 44]
(see Fig. 1), and deployed it into a rectangular workspace of
area 3.6× 4.5m2, mirroring out simulation setup.

Conditions. We designed three experimental conditions
(shown on the left column of Table II) involving robot
navigation under different crowd behaviors that a robot could
encounter in a crowded space:

Cooperative: Three users and the robot move between the
corners of the workspace. Users were instructed to navigate
naturally with a normal walking speed.

Aggressive: One user and the robot exchange corners. The
user was instructed to move straight with normal walking
speed without accounting for collisions, i.e., forcing the robot
to assume complete responsibility for collision avoidance.

Distracted: One user, starting from the left side, first moves
to the right but quickly shifts back to their initial position.

Across all conditions, the robot moves between the start
and goal points, fixed at (0, 0) and (3.6, 4.5) respectively.
The preferred speed for the robot is set to 0.8m/s which
was empirically observed to be a natural speed for users
during pilot trials. We conducted real-world experiments under
all conditions (20 trials per algorithm for the cooperative
condition and 10 trials per algorithm for the rest).

Algorithms. Across conditions, we compared the perfor-
mance of the same MPC architecture under three different
motion prediction models: CV, S-GAN-1, and S-GAN-20.
We did not instantiate a baseline based on CVN since it was
shown to perform comparably with CV in simulation.

Hypotheses. While S-GAN models performed worse than
CV in simulation, their prediction accuracy on real-world
datasets [14] (Fig. 2) appeared promising for real-world
operation. Thus, we expected S-GAN models to outperform
baselines and enable improved navigation performance. We
formalized these expectations into the following hypotheses:



TABLE II: Real-world experiments. Each row shows a different experimental condition: an illustration of the crowd behavior
under each condition is shown on the left (users and their goals are shown in blue, whereas the robot and its goal are shown
in black color); the multistep prediction error across trials is shown in the middle (error bands indicate 95% confidence
intervals); a scatter plot of Safety against Time to goal is shown on the right.

Condition Prediction Error Safety vs Time to goal

H1: S-GAN-based prediction is more accurate than CV
prediction across all conditions.

H2: S-GAN-based prediction enables the MPC to achieve
higher navigation performance across all conditions.

H3: Lower prediction error generally enables the MPC to
achieve higher navigation performance.

B. Results

Table II shows the multistep prediction error (aggregated
values are listed in Table I) and the navigation performance
distribution per condition. Fig. 5 relates average prediction
error per trial to navigation performance. Fig. 4 connects
proximity to the robot to prediction performance. Finally,
Fig. 6 shows how different algorithms make predictions

and action decisions in the same scene. Footage from our
experiments can be found at https://youtu.be/mzFiXg8KsZ0.

H1. We see that S-GAN-20 outperforms CV and S-GAN-1
in terms of ADE and FDE across all conditions (Table I), and
exhibits consistently lower multistep prediction error (Table II,
2nd column). S-GAN-1 also outperforms CV under the
cooperative condition but not under aggressive and distracted
conditions. Thus, H1 holds for a strong model like S-GAN-20.

H2. From the right column of Table II, we see that for
the cooperative condition, S-GAN-20 is mostly on the left,
corresponding to a good time efficiency, and usually higher
than the 0.5m Safety line whereas the other algorithms are
more dispersed all over the graph. In the aggressive condition,
no major differences are observed in terms of efficiency; S-



Fig. 4: Average human trajectory prediction error against distance from human at the time of the prediction.

(a) Safety (b) Time to goal

Fig. 5: Relationship between prediction performance and
navigation performance per trial in the real world.

GAN-20 is often but not consistently safer than baselines.
In the distracted condition, algorithms are close to each
other. None of these relationships appeared to be statistically
significant (pairwise U-tests). Thus, we find no support that
the clear superiority in SGAN-20 predictions (H1) translates
to superiority in navigation, and therefore H2 is rejected.

H3. Fig. 5 shows scatter plots for Safety and Time to
goal against Displacement Error per trial and condition.
Across conditions, we see a pattern connecting lower errors
to higher safety and lower time to goal. However, this pattern
is not definitive: datapoints are scattered across large regions
for both navigation metrics. Further, as shown in Table II,
prediction rankings do not transfer clearly to navigation
rankings. Thus, we find no support that lower prediction
error correlates with improved navigation and H3 is rejected.

VII. DISCUSSION

Model Transfer. The high-quality predictions of S-GAN
transferred from offline datasets to onboard robot performance:
S-GAN-20 was consistently more accurate across real-world
conditions(H1), which shows the efficacy of this generative
machinery in modeling multiagent interactions. However,
S-GANs struggled with out-of-distribution behaviors encoun-
tered in the ORCA-simulated trials (Sec. V-C). While ORCA
behaviors are less representative of real pedestrians, this
observation highlights the sensitivity of the model to the
modes of interaction found in the training dataset. Inducing

structure through interaction representations [23, 31, 37]
might improve transfer across a wider range of behavior.

Robot and crowd motion are entangled. Across models,
prediction performance did not clearly map to navigation
performance (H3). In a tight space like our lab workspace,
robot motion is coupled with crowd motion. We accounted
for that with a joint prediction model, capturing the close
unfolding crowd-robot interactions. However, when the MPC
forces the robot to deviate from the model’s ego-prediction,
the resulting robot action likely violates the validity of the
crowd motion prediction. While the prediction inconsistency
cost (see Sec. V-B) motivated the MPC to stay close to the ego
prediction, the other costs may conflict on some occasions,
leading to states outside the model’s confidence. An exciting
direction for future work is incorporating explicit formalisms
of prediction model confidence into online decision-making.

Beyond the Safety-Efficiency tradeoff. After the lab exper-
iments, users shared that MPC with S-GAN was predictable,
safer, and more comfortable, but these values are not reflected
in the evaluation metrics. While Safety and Efficiency are
extensively used for evaluation in social navigation [26],
they miss important attributes of interaction such as human
comfort, satisfaction, and smoothness. Ongoing work has
looked at different aspects of comfort [24, 41] but future work
is needed on the design of validated metrics of interaction.
Observations such as human gaze, expressions, and gestures
can be used to recover these properties of the interaction.
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