
MuSHR: A Low-Cost, Open-Source Robotic
Racecar for Education and Research

Siddhartha S. Srinivasa, Patrick Lancaster, Johan Michalove, Matt Schmittle, Colin Summers,
Matthew Rockett, Joshua R. Smith, Sanjiban Choudhury, Christoforos Mavrogiannis, Fereshteh Sadeghi

Paul G. Allen School of Computer Science & Engineering
University of Washington
Seattle, WA, 98195-2355

mushr@cs.washington.edu
https://mushr.io

Abstract—We present MuSHR, the Multi-agent System for
non-Holonomic Racing. MuSHR is a low-cost, open-source
robotic racecar platform for education and research, developed
by the Personal Robotics Lab in the Paul G. Allen School of Com-
puter Science & Engineering at the University of Washington.
MuSHR aspires to contribute towards democratizing the field of
robotics as a low-cost platform that can be built and deployed
by following detailed, open documentation and do-it-yourself
tutorials. A set of demos and lab assignments developed for the
Mobile Robots course at the University of Washington provide
guided, hands-on experience with the platform, and milestones
for further development. MuSHR is a valuable asset for academic
research labs, robotics instructors, and robotics enthusiasts.

I. INTRODUCTION

The Multi-agent System for non-Holonomic Racing
(MuSHR1) is an open-source, full-stack robotics platform de-
signed to advance robotics research and education by making
a fully integrated robotic race car available in an easy-to-
assemble and economic package (Fig.1 depicts a MuSHR car
prototype). Using rapid-prototyping techniques and off-the-
shelf parts, we provide an open design that can be built by
following do-it-yourself instructions. We also provide an ever-
expanding set of tutorials that can guide any user–from the
hobby enthusiast to the experienced researcher–through the
capabilities of the racecar and underlying robotics principles.
The MuSHR platform was developed in the Personal Robotics
Lab at the University of Washington’s Paul G. Allen School
of Computer Science & Engineering. Taking inspiration from
the MIT RACECAR project [1], we set out to create a more
affordable (the current design that includes a 2D laser scanner,
a RGBD camera, and an IMU can be built for around $900)
full-stack robotics system which not only can support our own
research and teaching demands, but those of the community
at-large.

This work was partially funded by the Honda Robotics Institute USA, Intel,
and the Paul G. Allen School of Computer Science & Engineering at the
University of Washington. We are grateful for their support.

1The acronym MuSHR is inspired by dog-sled racing, mushing, where
dogs (most commonly Alaskan Huskies) work together to pull a sled. As
the University of Washington’s mascot is the Husky, we found this name
especially fitting.

Fig. 1: The MuSHR racecar. MuSHR can be built for $600, through the use
of off-the-shelf components, and user-friendly build instructions, found at our
website, (https://mushr.io). A complete open-source software stack can be
found at our Github pages, ((https://github.com/prl-mushr)).

II. PLATFORM

In this section, we provide an overview of the hardware and
software architectures of the MuSHR platform. The hardware
design is based on a series of off-the-shelf components that
can be easily found online and in hardware stores around the
world, whereas the software architecture was developed at the
Personal Robotics Lab and is provided through our Github
page.

A. Hardware Architecture

The car is built on a Redcat Racing Blackout SC 1/10
chassis featuring a 4x4 suspension, and non-flat tires. The
chassis accommodates and protects all of the sensing, control,
steering, and power subsystems of the car (see Fig.3 for
an overview of the main system components). The car is
equipped with a variety of sensors: an RGBD camera (Intel
Realsense D435i), a Laser scanner (YLIDAR X4) providing
distance measurements, and a bump sensor (VEX Bumper
switch) detecting collisions. Computations take place on a
Nvidia Jetson Nano computer, which can easily be loaded
with the desired operating system and programs through an
SD card. A Logitech F710 wireless controller can also issue

ar
X

iv
:1

90
8.

08
03

1v
2

 [
cs

.R
O

]
 2

2
A

ug
 2

01
9

https://mushr.io
https://mushr.io
https://github.com/prl-mushr

Fig. 2: Fleet of MuSHR cars built in the Personal Robotics Lab.

Fig. 3: Overview of the MuSHR hardware components.

commands to the car and may be used for teleoperation. All
four wheels are driven by a brushless DC motor (Jrelecs F540
3930KV), whereas a servo motor (ZOSKAY 1X DS3218)
controls steering. The whole vehicle is powered by two NiMH
batteries (Redcat Racing HX-5000MH-B), one dedicated to
powering the sensors and computer, and one used to power

Fig. 4: Overview of the MuSHR software architecture.

the motors. A power converter (DZS Elec LM2596) converts
the higher voltage of the battery to the necessary 5V max
for the computer, whereas a VESC speed controller (Turnigy
SK8-ESC) converts steering and velocity commands into mo-
tor/servo commands.

B. Software Architecture

The software architecture is depicted in Fig.4. It comprises
four main components: (1) the Sensing interface; (2) the
Control module; (3) the Electronic Speed Controller (ESC)
interface; (4) the Localization module. We provide a brief
description of each one of them:

a) Sensing interface: Each sensor on the car (see Sensors
column of Fig.3) comes with a sensor interface that translates
raw inputs into ROS messages. In particular, the LIDAR, and
the Realsense camera have open source ROS interfaces. The
bumper button source takes input from the GPIO pins on the
computer and publishes them to a ROS message.

b) Control Module: An autonomous model predictive
controller (mushr_rhc) is provided as an off-the-shelf plan-

https://github.com/EAIBOT/ydlidar
https://github.com/IntelRealSense/realsense-ros
https://github.com/prl-mushr/mushr_rhc

Fig. 5: Screenshots from the MuSHR Build Guide, which is available in video
format at the MuSHR website.

ner/controller hybrid. mushr_rhc is flexible to handle both
static and dynamic trajectory generation, with a tunable cost
function, and rviz debugging visualization tools. Given a
map and a goal location, mushr_rhc plans to nearby way-
points, avoiding mapped obstacles. Additionally, the control
module allows for teleoperation via joystick control and has
the ability to incoporate a separate a backup safety controller.

c) Electronic speed controller (ESC) interface: In order
to maintain safe operation, the ESC interface multiplexes
multiple commands from the teleoperation controller, the
autonomous controller, and an optional safety controller. The
highest priority commands are sent to the VESC software con-
troller, which smooths them and converts Ackermann steering
commands into servo positions and motor speeds.

d) Localization module: The localization module is
based on a particle filter [3], adapted from [1].

The outlined architecture is implemented in our Github
navigation stack. Our stack provides a quick, out-of-the-box
deployment of a basic functionality, but also makes it easy
for users to incorporate additional perception and planning
components.

III. DOCUMENTATION

Through the MuSHR webpage (https://mushr.io) and the
MuSHR Github pages (https://github.com/prl-mushr), we pro-
vide open, detailed documentation, including complete build-
ing instructions in video format (see Fig.5), manuals for
software and hardware components, tutorials, lab assignments
from courses at the University of Washington, frequently-
asked-questions, and support.

We provide a series of tutorials, guiding the user from their
first steps with the platform to more advanced projects, pro-
viding time estimates for each milestone. A system overview
provides a holistic overview of the racecar software and hard-
ware components, whereas a quick start tutorial enables users
to get their platform up and running in as little as 30 minutes.

A quick introduction to ROS (the Robot Operating System)
[2] familiarizes the user with the fundamentals of modern
robot software, whereas more advanced tutorials carry the
user through the development of teleoperation and autonomous
navigation modules. Finally, a workflow reference provides
a set of good practices for building custom components on
top of the provided modules and highlights some hints for
troubleshooting. We will be enriching and expanding the basic
set of tutorials to support the needs of users as the project
moves forward.

IV. MUSHR FOR EDUCATION & RESEARCH

MuSHR is currently the main platform used in CSE 490R:
Mobile Robots, CSE 571: Algorithms and Applications, and
EE P 545: The Self-Driving Car–Introduction to AI for Mo-
bile Robots at the University of Washington. These courses
contain extensive experimental projects on MuSHR, carrying
senior undergraduate and graduate students through a series
of essential localization, control, and planning algorithms.
Fig.2 depicts part of the MuSHR fleet used in the labs of
the courses at the University of Washington. We believe that
MuSHR could be an invaluable asset for education. From high-
school robotics projects, to University-level courses, the low
development cost of MuSHR, its detailed documentation and
our support, we hope instructors across the globe will benefit
from this resource.

The MuSHR platform provides an excellent testbed for
showcasing a wide variety of robotics research projects. As
examples, we are currently working on a series of exciting
research directions including decentralized, multi-robot nav-
igation and collaborative multi-robot manipulation, through
the fabrication and attachment of a custom gripper. We are
planning to deploy the cars in an indoor workspace, equipped
with a high-accuracy, motion-capture system that will allow
us to perform robust localization and experiment with a series
of interesting, custom-built maps.

V. AFFORDABILITY & PERFORMANCE

MuSHR is inspired by the MIT RACECAR [1] project but
can be built with a fraction of the cost, while not sacrificing
autonomous navigation performance. For reference, the basic
MuSHR platform, without any sensors can be built with $600
(a similar MIT racecar setup costs about $1,000), while a
version with a laser scanner and a RGBD camera costs around
$900 (a similar MIT racecar setup costs about $2,800).

The outlined reduction in the development costs was
achieved by incorporating hardware subsystems of lower cost,
while ensuring baseline functionalities that could support a
wide variety of users, ranging from hobbyists to educators
and academic researchers. For example, MuSHR’s chassis,
including more powerful servo and brushless motors than the
MIT car, costs half the price, while not compromising its
robustness or controllability. Furthermore, MuSHR makes use
of a Jetson Nano processing unit, which costs about three times
less than the Jetson TX2 used by the MIT racecar. In practice,
we have not found this reduction in processing power to be

https://mushr.io/hardware/build_instructions/
https://mushr.io
https://github.com/prl-mushr
https://courses.cs.washington.edu/courses/cse490r/19sp/
https://courses.cs.washington.edu/courses/cse490r/19sp/
https://courses.cs.washington.edu/courses/cse571/19wi/

prohibitive; the robot is still capable of running algorithms
for localization, planning, and machine learning. Besides, the
use of the Jetson Nano allows for the use of a less complex
and expensive power subsystem. In particular, MuSHRs power
sub-system consists of a simple battery and a buck converter,
compatible with a wide variety of standard RC car batteries.
Finally, MuSHR further reduces costs by using less expensive
sensors, such as the YDLIDAR X4 which costs about sixteen
times less than the MIT racecar’s Hokuyo UST-10LX. We have
found that the YDLIDAR X4s capabilities to be sufficient for
typical localization tasks.

VI. DISCUSSION

This document introduces MuSHR, a low-cost, open-source
robotic racecar platform developed by researchers at the Paul
G. Allen School of Computer Science & Engineering at the
University of Washington. MuSHR was designed to reach

a wide audience, ranging from hobbyists to educators and
academic researchers. The platform comes with open-source
instructions and video-based tutorials, designed to carry the
user through its hardware development. A complete hardware
and software documentation introduces the user to the plat-
form, whereas a user guide helps the user get started with
the car’s basic functionality and covers basic troubleshooting
topics. Our entire documentation is hosted on Github, free for
everyone to download, use, fork and iterate upon.

REFERENCES

[1] The MIT RACECAR. https://mit-racecar.github.io, 2016. Accessed:
2019-08-01.

[2] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source
robot operating system. In ICRA Workshop on Open Source Software,
2009.

[3] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
robotics. MIT Press, 2005.

https://mit-racecar.github.io

	I Introduction
	II Platform
	II-A Hardware Architecture
	II-B Software Architecture

	III Documentation
	IV MuSHR for Education & Research
	V Affordability & Performance
	VI Discussion
	References

