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Abstract—We focus on human-robot collaborative transport,
in which a robot and a user collaboratively move an object to a
goal pose. In the absence of explicit communication, this problem
is challenging because it demands tight implicit coordination
between two heterogeneous agents, who have very different
sensing, actuation, and reasoning capabilities. Our key insight
is that the two agents can coordinate fluently by encoding subtle,
communicative signals into actions that affect the state of the
transported object. To this end, we design an inference mech-
anism that probabilistically maps observations of joint actions
executed by the two agents to a set of joint strategies of workspace
traversal. Based on this mechanism, we define a cost representing
the human’s uncertainty over the unfolding traversal strategy
and introduce it into a model predictive controller that balances
between uncertainty minimization and efficiency maximization.
We deploy our framework on a mobile manipulator (Hello Robot
Stretch) and evaluate it in a within-subjects lab study (N = 24).
We show that our framework enables greater team performance
and empowers the robot to be perceived as a significantly more
fluent and competent partner compared to baselines lacking a
communicative mechanism.

Index Terms—Human-robot collaboration; Human-robot
teams; Implicit communication

I. INTRODUCTION

Recently, there has been vivid interest in developing phys-
ically capable robot partners that could assist humans in
context-rich, dynamic and unstructured domains [52] like
homes [59, 68] and manufacturing sites [34]. An important
task in this space involves the collaborative transport of
objects that might be too large or too heavy to be transported
by a single agent. This task is especially challenging as it not
only requires efficient and fluent coordination between the two
heterogeneous partners but also the simultaneous satisfaction
of geometric, kinematic, and physics constraints.

Humans often tackle physically demanding collaborative
tasks like transport by fluently coordinating their physical
movements with their partners [51] even without a concrete
plan, with minimal explicit coordination. This capability relies
on sophisticated mechanisms connecting perception and ac-
tion. A prevalent theory from action understanding, commonly
referred to as the “teleological stance”, highlights that agents’
actions can often be explained by an underlying goal [6, 12,
16]. This idea has inspired researchers in human-robot interac-
tion (HRI) to develop mechanisms that communicate a robot’s

Fig. 1: Footage from our study (N = 24) involving the collabo-
rative transport of an object (orange stick) by a user and a mobile
manipulator in a workspace with an obstacle (red color). The robot
runs our controller (IC-MPC), designed to balance functional and
communicative actions in collaborative tasks.

intended goal to an observer through its actions [13, 27]. These
mechanisms have produced intent-expressive robot behavior
in manipulation [13], autonomous driving [48], and social
robot navigation [35]. Likewise, we view communication—
especially implicit communication [27], the ability to infer
and convey information within physical actions—to be a
critical skill of robots working in close physical collaboration
with humans. Implicit communication can be low-latency,
robust to environmental disturbances (e.g., noise, poor lighting
conditions), and require less attention compared to explicit
forms. While explicit communication remains highly relevant
to team activities, implicit communication serves as an impor-
tant complement that supports fluent teamwork.

To investigate the implications of implicit communication
for physical human-robot teamwork, we instantiate a task of
human-robot collaborative transport, where the goal of the
human-robot team is to collaboratively move an object to
a goal pose while avoiding collisions with static obstacles
(see Fig. 1). In this task, the user is simultaneously an observer
of the robot and a dynamic actor, persistently influencing and
being influenced by the robot while it physically collaborates
with them. While prior work in human-robot collaborative
transport has emphasized fixed leadership roles for the two
agents [7, 8, 31, 37, 42, 54], we consider a dynamic negotiation
over a joint strategy of workspace traversal. We contribute a



control framework that leverages implicit communication [27]
through actions influencing the state of the transported object
to enable the robot to negotiate an efficient traversal with
its human partner. We move beyond past work on implicit
communication, where the user is either not an actor [13] or
not physically collaborating with their robot partner [30, 35].
We demonstrate our framework on a mobile manipulator
and evaluate it in a lab study (N = 24) involving the
collaborative transport of an object in a workspace with an
obstacle obstruction. We show that our framework outperforms
baselines lacking a communicative mechanism in terms of task
completion and human impressions.

In summary, we contribute:
• A formal mathematical representation of workspace

traversal strategies during collaborative object transport.
• A human-inspired inference mechanism that probabilisti-

cally maps a joint human-robot action to a joint strategy
of workspace traversal.

• A model predictive control framework that balances ef-
ficiency maximization and uncertainty minimization to
produce fluent, efficient teamwork in physically collabo-
rative tasks.

• Evidence from an extensive lab study (N = 24)
suggesting that our framework results in greater team
performance and positively perceived robot behaviors.
Videos from the study can be found at https://youtu.be/
0NTDrobSifg.

• Code and data from our study that could help the
community iterate on our work, publicly available at
https://github.com/fluentrobotics/icmpc collab transport.

II. RELATED WORK

We discuss relevant work on human-robot collaboration
(HRC), our target domain of human-robot collaborative trans-
port, and our technical foundation of implicit communication.

A. Human-Robot Collaboration

HRC, defined broadly as the integration of humans and
robots working together towards a set of (possibly joint) goals,
has attracted considerable attention in recent years [9, 18, 33,
64]. An important challenge in HRC involves determining a
fluent meshing between human and robot actions that leverages
the unique competences of both in an effective way [20]. This
has motivated research on the design of planning and control
frameworks that smoothly blend human and robot control
inputs [5, 14, 43, 57]. For many applications, the human and
the robot goals are well-defined; e.g., in shared control for
wheelchair navigation, the role of the robot is to lead the user
to a desired waypoint [9]. However, in other applications, the
richness of the context results in a multiplicity of ways in
which a task could be achieved. In those cases, a robot has to
reason about how its own strategy for satisfying its objectives
meshes with the strategy of its human partner [45, 47, 63, 69]
or how its actions contribute towards a joint strategy [66].
An underlying challenge involves determining an appropriate
space of strategies. Nikolaidis and Shah [40] describe an

interactive planning framework that iteratively switches role
assignment to humans and robots with the goal of converging
on a shared strategy. Zhao et al. [69] and Xie et al. [66]
learn spaces of strategies from observations of low-level action
sequences whereas Wang et al. [63] learn a latent space of
strategies that enables a robot to adapt to its collaborator.

Our approach is motivated by the physical HRC task of
human-robot collaborative transport. The execution of this task
admits multiple possible solutions in realistic environments
with obstacle obstructions. Recent work in HRC emphasizes
the extraction of these solutions from team strategies observed
in human teamwork. In contrast, we exploit the mathematical
structure of the domain, identifying strategies of collaborative
transport as classes of homotopy-equivalent trajectories of
workspace traversal [26, 28, 61]. This allows for methodical
enumeration of strategies in an interpretable form and in line
with insights from recent studies on human-human object
transport [15]. Additionally, while a body of work considers
validation in virtual benchmarks, we emphasize physical, ex-
plicit, and concurrent human-robot collaboration [52] treating
the robot as a fully embodied partner with mobile manipulation
capabilities.

B. Human-Robot Collaborative Transport

Physical HRC can support applications like personal
robotics, manufacturing, and construction [32, 44, 52]. Much
of the recent work has focused on collaborative manipulation
tasks involving a user and a manipulator, such as the rearrange-
ment of large or heavy objects [2, 3, 17, 25, 29, 53, 55, 70] and
the collaborative use of tools for sawing or bolt screwing [46].

Many real-world applications motivate the integration of
manipulation and robot mobility. An important task of interest
is the collaborative transport of an object by a user and
a mobile manipulator. This task is especially challenging
because in addition to human-robot coordination, it requires
considerations like collision avoidance, object stability, and
human ergonomics. A large body of work assumes a fixed
role assignment: the human intent is estimated and the robot
follows it [7, 8, 31, 37, 54]. This can be too restrictive,
especially when the robot has the capability to contribute
meaningfully to the task as an independent agent. To account
for such situations, Nikolaidis et al. [42] develop a probabilis-
tic controller that estimates the user’s preferences and gener-
ates corrective actions to guide them to an efficient strategy.
However, this implies that the robot is more equipped to guide
the interaction, which might not always be the case. Instead,
Ng et al. [39] allow leadership to be an emergent property
of following a policy extracted from human demonstrations.
Mörtl et al. [38] engineer a dynamic leadership negotiation
through actions executed on the transported object by the two
agents. While mobility is integrated across these works, it
is often oversimplified through the assumption of predefined
paths [38] or collision-free workspaces [7, 8].

In this work, we leverage the full mobility of a mobile
base and explicitly account for obstacles while negotiating
a strategy of workspace traversal. We develop a control

https://youtu.be/0NTDrobSifg
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framework that enables the robot to flexibly negotiate with
the user using implicit communication, realized via subtle
signals encoded in velocities transmitted to the transported
object. In contrast to approaches directly learning traversal
policies from human demonstrations [39], our approach has
the potential to handle diverse maps by reasoning about the
mapping between team actions and traversal strategies. While
prior work assumes heavily instrumented setups including
sensorized objects [7, 8, 17, 37], we use a commodity mo-
bile manipulator (Hello Robot Stretch) and limited additional
instrumentation (a motion capture system to eliminate the
influence of localization errors). Finally, we move beyond prior
work in terms of validation depth by conducting an extensive
lab study (N = 24) with in-depth insights via objective and
subjective measures.

C. Implicit Communication

Any deviation from a robot’s expected behavior has the
potential to convey important, task-related information to
an observer [27]. This idea, rooted in conversational impli-
cature [19] has deep relevance to HRI [21, 58, 60]. The
community has long been exploring the expressive power
of modalities like motion [56], gaze [1], or gestures [11].
Researchers have been building algorithmic frameworks that
harness implicit communication to engineer fluent human-
robot teamwork. Knepper et al. [27] formalize implicit com-
munication as the minimization of the information entropy
over a probability distribution of possible goals. Considering a
social navigation domain, Mavrogiannis et al. [35] implement
implicit communication into a navigation controller that con-
veys the robot’s intended passing side to co-navigating users.
Considering a coverage task, Walker et al. [62] implement
implicit communication into the generation of robot motion
that influences an observer to summarize robot motion in a
desirable way. In a manipulation domain, Dragan and Srini-
vasa [13] instantiate implicit communication as Legibility, a
property of robot motion that enables an observer to infer the
target object of a manipulator’s reaching motion. Considering
the collaborative game Hanabi, Liang et al. [30] demonstrate
that implicit communication can be a powerful tool for teams
of humans and artificial agents working on a joint task.

Prior algorithmic instantiations of implicit communication
assume simplified teamwork settings. For instance, the user is
often passively observing the robot [13, 62], navigating next
to the robot [35], or working with a non-embodied agent [30].
In contrast, this work integrates implicit communication into
physical human-robot collaboration through the task of col-
laborative transport. This task uniquely integrates the user and
the robot as embodied, dynamic observers and actors, whose
actions influence each other and impact the quality of the team-
work. We define a space of goals, corresponding to strategies
of workspace traversal, which we identify using a notion of
topological invariance [36]. We then develop a probabilistic
inference that maps joint human-robot actions to strategies of
workspace traversal. By tracking the entropy of the distribution
over strategies, the robot may monitor the state of uncertainty

Fig. 2: A human (H) and a robot (R) collaboratively move an object
from an initial pose p0 to a final pose g in a workspace W . An
obstacle O stands in their way. To avoid collisions with O and reach
g, they have to coordinate on a strategy of workspace traversal. In
this work, we engineer implicit coordination through the velocities a
and u that the human and the robot exert on the object.

over the unfolding traversal. By introducing entropy as a cost
into a model predictive controller (IC-MPC), the robot is
capable of balancing functional and communicative actions
resulting in efficient, fluent, and positively perceived human-
robot teamwork.

III. PROBLEM STATEMENT

We consider a human H and a robot R collaboratively
transporting an object. The robot and the human grasp the
object at a fixed height; this allows us to instantiate the
problem on a planar workspace W ⊆ SE(2). Assuming a
quasistatic setting, the object’s state p ∈ W evolves according
to pk+1 = f(pk, ak, uk), where a ∈ A, u ∈ U represent
human and robot velocities, respectively, and k is a time index.
The workspace includes a set of obstacle-occupied regions
O ⊂ W . The goal of the human-robot team is to transport
the object from an initial pose p0 to a desired pose g in W
(see Fig. 2) while avoiding collisions with O. We assume
that the two agents do not communicate explicitly (e.g., via
language), but they observe the actions of one another. Our
goal is to design a control policy to enable the robot to
efficiently and fluently collaborate with its human partner.

IV. BALANCING FUNCTIONAL AND COMMUNICATIVE
ACTIONS IN HUMAN-ROBOT COLLABORATIVE

TRANSPORT

We describe a control framework that leverages implicit
communication to support efficient and fluent collaboration
in human-robot collaborative transport. By reasoning about
its partner’s uncertainty over the way the task is being exe-
cuted, the robot balances between communicative, uncertainty-
reducing actions, and functional, task-driven actions. This
balance is not prescribed, but rather dynamically adaptive to
the robot’s belief about the uncertainty of its partner.

A. Formalizing Joint Strategies of Workspace Traversal

Collaborative tasks involving multiple agents working to-
gether require consensus on a joint strategy ψ, i.e., a qual-
itatively distinct way of completing the task, out of the set
of all possible joint strategies, Ψ. Often, this consensus is



not established a priori; rather, it is dynamically negotiated
during execution. The abstraction of a joint strategy effectively
captures critical domain knowledge at a representation level.
While prior work on collaborative transport has emphasized
role assignment across the team (i.e., whether the robot or
the human are leading or following each other) [23, 38, 40],
realistic, obstacle-cluttered environments present additional
important challenges, such as the decision over how to pass
through an obstacle-cluttered workspace.

In this work, we formalize the space of workspace traversal
strategies using tools from homotopy theory [26]. The human-
robot team is tasked with transporting an object from its initial
pose p0 to a final pose g, resulting in an object trajectory
p : [0, 1] → W , where p(0) = p0 and p(1) = g, belonging
to an appropriate space of trajectories P . Obstacles, defined
as the connected components of O, naturally partition P into
equivalence classes Ψ, where each ψ ∈ Ψ represents a dis-
tinct workspace traversal strategy under which the transported
object can travel from p0 to g, i.e.,

P =
⋃
ψ∈Ψ

ψ

∀ψi, ψj ∈ Ψ : (ψi ∩ ψj ̸= ∅) =⇒ (ψi = ψj)

∀pi,pj ∈ ψ : pi ∼ pj

. (1)

These classes can be identified using a notion of topological
invariance. The works of Kretzschmar et al. [28], Mavro-
giannis et al. [36], Vernaza et al. [61] use winding numbers
to describe topological relationships between the robot and
obstacles or humans navigating around it. Here, we adapt
this idea to collaborative transport by enumerating the set of
homotopy classes between the object trajectory and obstacles
in the workspace. Specifically, for any object trajectory p
embedded in a space with m obstacles o1, . . . , om, we can
define winding numbers

wi =
1

2π

∑
t

∆θit, i = 1, . . . ,m, (2)

where ∆θit = ∠ (pt − oi, pt−1 − oi) denotes an angular dis-
placement corresponding to the transfer of the object from
pt−1 to pt (see Fig. 3a). The sign of wi represents the passing
side between the object and the i-th obstacle, and its absolute
value represents the number of times the object encircled the
i-th obstacle. For a trajectory p, the tuple of winding number
signs

W = (signw1, . . . , signwm) (3)

represents an equivalence class describing how the human-
robot team transported the object past all obstacles in the
environment. In this work, we model the space of joint
strategies Ψ as set of distinct W , i.e., |Ψ| = 2m.

B. Inferring Strategies of Workspace Traversal

We describe an inference mechanism that maps observations
of team actions to a belief over a workspace traversal strategy.
This mechanism is agnostic to the specific definition of the
strategy. At time t, we assume that the robot observes the

(a) Identification of workspace traversal strategies based on path homo-
topy [28]. By integrating the angle of the vector between the obstacle and the
object as it is being transported along a path p, we extract a winding number
w(p) identifying the strategy of workspace traversal. Here, w(p2) = w(p3)
since both p2, p3 passed on the right of o1.

(b) Representing workspace traversal strategies as tuples of winding number
signs, W . In this scene with two obstacles, there are four possible strategies
represented as continuous curves. The red curve highlights a strategy corre-
sponding to passing on the right of o1 (w1 > 0), and the left of o2 (w2 < 0).
This representation is applicable to any number of obstacles.

Fig. 3: Illustration of our topological abstraction for representing
strategies of workspace traversal.

joint action α = (a, u), the object state p, and the task context
c = (g,O). Given α, p, and c, our goal is to infer the unfolding
workspace traversal strategy, ψ, i.e.,

P(ψ | α, p, c). (4)

Using Bayes’ rule, we can expand (4) as

P(ψ | α, p, c) = 1

η
P(α | ψ, p, c)P(ψ | p, c), (5)

where the left-hand side expression is the posterior distribution
of the joint strategy ψ, and on the right-hand side, η is a
normalizer across α, P(α | ψ, p, c) is the joint action likelihood
distribution and P(ψ | p, c) is a prior distribution of the joint
strategy before observing the joint action. We can rewrite the
joint action likelihood distribution as

P(α | ψ, p, c) = P(a | ψ, p, c)P(u | ψ, p, c), (6)

since the two agents choose their actions independently.
The distribution of (4) allows the robot to represent the

belief of its partner over the unfolding traversal strategy.
A natural measure of uncertainty over the observer’s belief
regarding that strategy can be acquired by computing the
information entropy of ψ, conditioned on known α, p, c:

H (ψ | α, p, c) = −
∑
ψ∈Ψ

P(ψ | α, p, c) logP(ψ | α, p, c). (7)



Intuitively, the higher H is, the higher the uncertainty of the
user over the unfolding ψ is assumed to be.

C. Integrating Human Inferences into Robot Control

We integrate the inference mechanism of (4) into a model
predictive control (MPC) algorithm by using its entropy (7)
as a cost. Given the context c = (g,O) and the object state
p at time t, the goal of the MPC is to find the sequence
of future robot actions u∗ that minimizes a cost function J
over a horizon T . At every control cycle, the MPC solves the
following planning problem:

(ut:t+T )
∗
= arg min

ut:t+T

J(pt:t+T , ut:t+T )

s.t. pk+1 = f(pk, ak, uk)

ak ∈ A
uk ∈ U

, (8)

We split J into a running cost Jk and a terminal cost JT

J(pt:t+T , ut:t+T ) =

T∑
k=0

γkJk(pt+k, ut+k)

+ JT (pt+T , ut+T )

, (9)

where γ is a discount factor, and the terminal cost penalizes
distance from the object’s goal pose g:

JT (pt+k, ut+k) = ||pt+k − g||2. (10)

The running cost Jk is a weighted sum of two terms, i.e.,

Jk(pt+k, ut+k) =wobsJobs(pt+k, ut+k)

+ wentJent(pt+k, ut+k),
(11)

where

Jobs(pt+k, ut+k) =

max

(
0,− log

(
min
o∈O

||pt+k − o||
δ

))
, (12)

is a collision avoidance cost penalizing proximity to obstacles,
δ is a clearance threshold, Jent is a cost proportional to the
entropy defined in (7), and wobs, went are weights.

We refer to this control framework as Implicit Communi-
cation MPC, or IC-MPC. At every control cycle, IC-MPC
plans a future robot trajectory that balances between functional
objectives (collision avoidance, progress to goal) and commu-
nicative objectives (minimizing the partner’s uncertainty over
the upcoming joint strategy). The robot executes the first action
ut from the planned trajectory and then replans. This process
is repeated in fixed control cycles until the task is completed.

V. USER STUDY

We conducted an IRB-approved, within-subjects user study
(U-M HUM00254044) in which a user collaborates with a
robot to jointly transport an object to a designated pose. Each
user experienced the same set of conditions, each correspond-
ing to a collaborative algorithm running on the robot: ours,
and two baselines. Through mailing lists, we recruited 24

participants (4 female, 18 male, 2 other), aged 18-29 from
a university population. On average, participants rated of their
familiarity with robotics technology as 4.1 (SD = 0.74) on
a scale from 1 (not at all familiar) to 5 (very familiar). The
study lasted 45 minutes, and each participant received $20 of
compensation.

A. Experiment Design
Task Description. The user and the robot hold opposite

ends of an object (a wooden stick) and transport it together
from an initial pose to a goal pose. Users collaborate with
each algorithm three times to ensure they experience a diverse
range of interactions. At the start of each of the three trials,
the user and the robot stand in predetermined configurations
(Fig. 4), following the same fixed order for all algorithms.

Algorithms. We compare the performance of our frame-
work (IC-MPC) against two baselines:

• Vanilla-MPC: A purely functional ablation of IC-MPC
with no uncertainty-minimizing objective (went = 0).

• VRNN [39]: A learning-based path planner based on a
Variational Recurrent Neural Network that predicts the
most likely future path of the object based on human
demonstrations. The robot takes actions to track path
predictions as closely as possible.

Metrics. We evaluate performance in terms of:
Objective Metrics:
• Success rate, defined as the proportion of successful

trials. A trial is successful if the following conditions
hold: a) any part of the object reaches the goal; b) the
object stays within the workspace boundary; c) the object
stays parallel to the ground—i.e., not lifted above the
obstacle or dropped; d) there are no obstacle collisions.

• Completion time, measured as the time taken for the
object to reach the goal.

• Acceleration, measured as the average acceleration of the
human trajectory similar to prior work [35].

Subjective Metrics:
• Warmth, Competence, and Discomfort, measured using

the RoSAS scale [10]. We use the original form of the
scale: a single list of 18 items in randomized order and
a nine-point response scale from 1 = “Definitely not
associated” to 9 = “Definitely associated”.

• Fluency, measured using the Fluency in HRI scale [20].
To reduce fatigue, we use seven of eight items that
were validated with objective measures in the original
paper [20], with one item removed as recommended. The
items are presented in randomized order with a seven-
point response scale from 1 = “Strongly disagree” to 7 =
“Strongly agree”.

Hypotheses. Our insight is that implicit communication will
have observable implications for the collaboration quality of
the human-robot team, at an objective and subjective level. We
formalize this insight into the following two hypotheses:
H1 IC-MPC is more effective at completing this task in

collaboration with a user compared to Vanilla-MPC and
VRNN as measured by the objective metrics.



Fig. 4: Users experienced three different starting configurations with
each robot algorithm. From left to right: the user and the robot stand
side-by-side; the user stands directly behind the robot; the user stands
directly in front of the robot. For the third configuration, the user faces
toward the goal and holds the object behind their back.

H2 IC-MPC is viewed more favorably as a collaborator
compared Vanilla-MPC and VRNN as measured by users’
responses to questionnaires containing the subjective met-
rics.

B. System Development

Experimental Setup. We deploy all algorithms on Stretch
RE2 from Hello Robot [24], a mobile manipulator with a
differential-drive mobile base and a prismatic arm. To avoid
excessive torque on the robot’s end-effector, the transported
object is a lightweight stick of 0.914 m length and 0.05 kg
mass. The robot’s wrist motors are turned off to allow free
rotation of the end effector. The lift of the robot arm is
static throughout the task to constrain the object’s movement
to SE(2). Across our experiments, the team operates in a
workspace with area 2.8× 5.6 m2. To study the coordination
of the human-robot team over a discrete decision, a single
static obstacle of area 0.15× 0.15 m2 is placed in the center
of the workspace (see Fig. 1). The workspace is fitted with an
overhead Optitrack Flex 13 motion-capture (mocap) system
that continuously streams poses and velocities of the robot
and the user (via a construction-style helmet) at 120 Hz.

Human modeling. Since our study involved an environ-
ment with a single obstacle, we set Ψ = {LEFT, RIGHT},
corresponding respectively to w < 0 and w > 0. We instan-
tiated the strategy inference using analytical models of the
prior distribution and joint action likelihood distribution (5).
However, it is possible to approximate this inference using
data-driven techniques, e.g., by learning them from datasets
of demonstrations [15, 39].

We model the prior distribution over the joint strategy as a
function of the winding number w. Without loss of generality,
when p0, o, g are collinear, we consider the obstacle to have
been passed when |w| ≥ 1

4 :

P(LEFT | p, c) = max (0,min (0.5− 2w, 1))

P(RIGHT | p, c) = max (0,min (0.5 + 2w, 1))
(13)

Before the obstacle is passed, the action likelihood dis-
tribution models the most likely action as the velocity that

Fig. 5: Workspace traversal strategy inference. The prior distribution
for P(LEFT | p, c) is shown as a colormap in the background, and
the mode of the action likelihood distribution for P(a | LEFT, p, c) is
shown using gray arrows in the foreground.

maximizes change in the winding number w. We approximate
this as

P(a | LEFT, p, c) ∝ exp
(
a ·R

(π
3

)−→po
)

P(a | RIGHT, p, c) ∝ exp
(
a ·R

(
−π
3

)−→po
) (14)

where R(·) is a 2D rotation matrix. After the obstacle is
passed, the most likely action is instead in the direction of the
goal. We illustrate the prior and action likelihood distributions
for ψ = LEFT in Fig. 5. The same model of the action
likelihood distribution is used for human and robot actions.

Prior to the user study, we evaluated our analytical models
using the simulation dataset provided by Ng et al. [39]. We
considered the subset of dataset environments with a single
obstacle and annotated each trajectory with a ground truth joint
strategy label. The prior and action likelihood distributions
achieved 98.9% and 72.4% accuracy in this subset of the
dataset, respectively.

MPC. All algorithms are implemented using an open-source
package [4] for Model Predictive Path Integral (MPPI) con-
trol [65]. The same discount factor γ = 0.95, planning horizon
15 × 0.25 s, and number of rollout samples (100) is used
across all algorithms. IC-MPC and Vanilla-MPC use obstacle
clearance threshold δ = 0.5 and weight wobs = 1.0. IC-
MPC uses entropy weight went = 1.0. These parameters were
empirically selected to ensure good performance in our envi-
ronment during pilot hardware trials, and different workspace
configurations may require different parameter combinations.
Observations of human velocities are downsampled to 10 Hz
from the motion capture, and a constant velocity model is used
for the human motion prediction rollouts [50]. All algorithms
run on an Intel i7-13700 CPU at 15 Hz.

VRNN. We adapt MPC to track VRNN’s prediction of the
object’s future path as closely as possible as in Ng et al. [39].
However, we found that path predictions occasionally have
undefined orientations, e.g., the output of the model contains
states for which |cos θ| > 1. Consequently, we use only the
translational component of the path predictions. Since VRNN
is designed to avoid obstacles and reach the goal, we use a
running cost based on Euclidean distance to the predicted path
and no terminal cost.



TABLE I: Summary of objective metrics. Success rate is calculated
out of 72 total trials for each algorithm. Mean and standard deviation
of Time and Acceleration consider only successful trials.

Metric IC-MPC Vanilla-MPC VRNN

Success rate (%) ↑ 98.6 88.9 51.4
Completion time (s) ↓ 28.54 (1.26) 28.86 (3.68) 24.98 (1.67)
Acceleration (m/s2) ↓ 0.67 (0.15) 0.69 (0.17) 0.71 (0.14)

C. Procedure

Before the study, participants received information about
the purpose of the study and data collection. They provided
informed consent, acknowledging that their participation was
voluntary and that they would not receive descriptions of
the robot algorithms until the end of the study. They were
then brought into the motion capture area and instructed to
wear a helmet to be tracked by the mocap system. They
were instructed to hold the object with both hands, keeping
it parallel to the ground, and to collaborate with the robot in
whichever way felt natural to them, including moving around
the robot. To get familiarized with the interaction and the task,
participants completed three practice rounds in which the robot
was teleoperated before the main experiment.

For the main portion of the experiment, participants ex-
perienced each condition (a different algorithm embodied
on the robot) three consecutive times. After each condition,
participants were informed of the number of times they
succeeded at the task with the robot and directed to respond
to a questionnaire about their latest experience. To account for
ordering effects, we randomized items in both questionnaires
every time they were presented. Additionally, we performed
counterbalancing of the conditions by randomly assigning
participants to one of six possible orderings of the three
conditions.

D. Analysis

We found that objective and subjective metrics did not
uniformly pass the Shapiro-Wilk test of normality. Thus, for
consistency, we use the non-parametric Friedman test to detect
effects of the robot algorithms on dependent variables and the
non-parametric paired Wilcoxon signed-rank test with Holm-
Bonferroni corrections [22] for post-hoc pairwise comparison
tests. Effect sizes are reported using Kendall’s coefficient of
concordance (denoted as Wk to disambiguate it from the test
statistic of the Wilcoxon signed-rank test) and Cohen’s d.

H1. We report a summary of objective metrics for each
algorithm in Table I. IC-MPC exhibited substantially higher
success rate compared to both Vanilla-MPC and VRNN. We
found a significant effect of the robot algorithm on completion
time (χ2(2) = 20.61, p < 0.001,W = 0.45). Post-hoc tests
indicated that, of successful trials, IC-MPC completed the task
slower compared to VRNN (W = 3.0, p < 0.001, d = 2.4).
We found no significant difference in completion time between
IC-MPC and Vanilla-MPC (W = 92.0, p = 0.17, d = −0.11).
Finally, of successful trials, we found no significant effect
of the robot algorithm on acceleration (χ2(2) = 3.73, p =
0.15,W = 0.08). Thus, we find partial support for H1.

TABLE II: Mean and standard deviation of subjective metrics.
∗p < .05, ∗∗p < .01, ∗∗∗p < .001

Metric IC-MPC Vanilla-MPC VRNN

Warmth [10] ↑ 3.44 (1.89) 3.12 (1.98) 2.99 (1.82)
Competence [10] ↑ 6.06 (1.86) 5.15 (1.82)∗ 4.02 (1.88)∗∗∗
Discomfort [10] ↓ 2.15 (1.29) 2.86 (1.84)∗ 3.22 (1.49)∗∗∗

Fluency [20] ↑ 5.73 (1.02) 4.64 (1.41)∗∗ 3.67 (1.49)∗∗∗

TABLE III: Friedman test results on subjective measures.

Metric χ2(2) p Wk

Warmth [10] 3.85 0.146 0.08
Competence [10] 18.86 < 0.001 0.39
Discomfort [10] 15.46 < 0.001 0.32

Fluency [20] 28.15 < 0.001 0.59

H2. We report subjective measures in Table II and related
test statistics in Table III. Prior to testing, we evaluated Cron-
bach’s alpha within each RoSAS subscale (warmth α = 0.90,
competence α = 0.92, discomfort α = 0.85) and within the
Fluency scale (α = 0.95) and found that all subscales had
high internal consistency. Individual users’ responses to items
within each subscale were subsequently averaged for analysis.

We found a significant effect of the robot algorithm on
users’ perception of competence, discomfort, and fluency.
Post-hoc tests found that IC-MPC was judged by users
as: significantly more competent compared to Vanilla-MPC
(W = 55, p = 0.021, d = 0.49) and VRNN (W = 26, p <
0.001, d = 1.09); significantly less discomforting compared to
Vanilla-MPC (W = 30, p = 0.018, d = −0.44) and VRNN
(W = 13.5, p < 0.001, d = −0.76); a significantly more
fluent collaborator compared to Vanilla-MPC (W = 28, p =
0.002, d = 0.89) and VRNN (W = 11, p < 0.001, d = 1.61).
No statistically significant effect was found on users’ percep-
tion of warmth. Thus, we find partial support for H2.

E. Discussion

Our hypotheses were motivated by a supposition that an ab-
sence of communication would create situations in which the
two agents attempt to follow contradictory strategies, resulting
in longer task duration, sudden movements to avoid collisions,
or task failure altogether. We believed these situations would
have a negative impact on users’ opinion of the robot as
a teammate. To better understand our findings, we examine
motion capture data collected during the study.

The spatial distribution of object trajectories (Fig. 6) reveals
that teams took wider paths around the obstacle when the
robot was running IC-MPC compared to Vanilla-MPC and
VRNN. This difference in behavior may explain our find-
ings for success rate and completion time. Without implicit
communication mechanisms to resolve ambiguity or achieve
consensus on traversal strategy, both baselines would often
drive straight towards the goal and attempt to pass the obstacle
from directions opposite the user, leading to collisions. By act-
ing earlier to take wider paths compared to Vanilla-MPC and
VRNN, IC-MPC reduced uncertainty about the joint strategy
faster than baselines (Fig. 7), thereby reducing the chance of



Fig. 6: Spatial distribution of object trajectories within the workspace during the user study, including failure cases, itemized per algorithm. IC-
MPC exhibits an almost uniform split between right and left, whereas baselines show mixed performance, including undesirable zig-zagging
effects, an artifact of increased uncertainty over the unfolding traversal strategy.

Fig. 7: Entropy over the workspace traversal strategy as a proxy for
strategy uncertainty, averaged across all trials for each algorithm. By
directly minimizing the entropy, IC-MPC accelerates consensus on
a traversal strategy. This reduces undesirable zig-zagging artifacts,
present in the execution of baselines (see Fig. 6).

similar collisions. As wider paths are longer than more direct
paths, teams took more time on average to complete the task
when the robot was running IC-MPC compared to VRNN.
Similarity between average completion time of IC-MPC and
Vanilla-MPC is coincidental: Vanilla-MPC had a tendency to
slow to a near stop as it approached close to the obstacle.

We speculated that users would make sudden movements
to avoid collisions caused by disagreement in joint strategy,
particularly when collaborating with baselines that lack a
communicative mechanism. However, in this study, we found
no significant difference in the average acceleration of the
human across robot algorithms. We made two observations
that could serve as possible explanations. First, the maximum
speed of the Stretch RE2 (0.3 m/s) is well below users’ average
walking speed, which caused them to consistently alternate
between taking a step and pausing to wait for the robot to
cover more distance, regardless of the algorithm. Second, the
slow speed of the robot gave users a relatively long time to
change course to avoid a collision, if they decided to do so.
Thus, sudden movements were uncommon.

Users noticed qualitative differences among algorithms.
In open-ended responses, they described VRNN as “unpre-
dictable” and “indecisive”. One user described Vanilla-MPC as
“a bad teammate that only does what they think is right”. Two
users who interacted with IC-MPC after one or both baselines

whose comments were comparative in nature wrote that IC-
MPC “felt more natural” and that “the collaboration on the
task was a lot more seamless in this series of attempts”.

In contrast to competence, discomfort, and fluency, we did
not find any significant effect of robot algorithm on users’
perception of warmth. This is not surprising, as we did not
design IC-MPC or the robot to be anthropomorphic or socially
expressive. At the start of each study session, we intentionally
provided the vague instruction to “collaborate in whichever
way feels natural”. However, we received informal feedback
from several participants that aspects of the interaction, in-
cluding communication with the robot, did not feel natural
or intuitive. Participants expressed confusion about how they
could communicate with the robot and whether the robot was
acknowledging, understanding, or ignoring what they were
trying to communicate. Designing the robot to be expressive
may facilitate interactions that are perceived as more natural.

VI. LIMITATIONS

While our decision-making framework is agnostic to the
types of actions that agents are executing, in this work we
considered a quasistatic setting integrating only velocities that
the agents transmit to the transported object. Future work
will integrate actions stemming from additional modalities,
such as force, language, body posture, eye gaze, and gestures.
Additionally, while our framework is not prescriptive on the
space of joint strategies Ψ, this work emphasizes the topo-
logical relationships between the human-robot team and the
obstacles around it. Future work will integrate additional strat-
egy attributes, such as leadership [38], and timing of critical
maneuvers. Our control implementation was based on a flexi-
ble and practical MPC framework, but alternative approaches
could be explored, such as POMDPs [41]. Our controller
demonstrated practical performance assuming a simple model
of human motion prediction (constant velocity); future work
will integrate more fine-grained prediction models [49, 67].
The relatively low max base speed (0.3 m/s) and payload (2
kg) of our robot might have influenced the types of interactions
with users. We aspire to deploy our framework on a robot
with higher payload and maximum speed to expand to tasks
involving heavier objects and allow for movement across all
6 object DoFs. We also plan on expanding to more complex
environments with more obstacles and dynamic agents.
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